2024
Journal Articles
Blanchard, Julia L.; Novaglio, Camilla; Maury, Olivier; Harrison, Cheryl S.; Petrik, Colleen M.; Fierro‐Arcos, Denisse; Ortega‐Cisneros, Kelly; Bryndum‐Buchholz, Andrea; Eddy, Tyler D.; Heneghan, Ryan; Roberts, Kelsey; Schewe, Jacob; Bianchi, Daniele; Guiet, Jerome; Denderen, P. Daniel Van; Palacios‐Abrantes, Juliano; Liu, Xiao; Stock, Charles A.; Rousseau, Yannick; Büchner, Matthias; Adekoya, Ezekiel O.; Bulman, Cathy; Cheung, William; Christensen, Villy; Coll, Marta; Capitani, Leonardo; Datta, Samik; Fulton, Elizabeth A.; Fuster, Alba; Garza, Victoria; Lengaigne, Matthieu; Lindmark, Max; Murphy, Kieran; Ouled‐Cheikh, Jazel; Prasad, Sowdamini S.; Oliveros‐Ramos, Ricardo; Reum, Jonathan C.; Rynne, Nina; Scherrer, Kim J. N.; Shin, Yunne‐Jai; Steenbeek, Jeroen; Woodworth‐Jefcoats, Phoebe; Wu, Yan‐Lun; Tittensor, Derek P.
Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0 Journal Article
In: Earth's Future, vol. 12, no. 12, pp. e2023EF004402, 2024, ISSN: 2328-4277, 2328-4277.
Abstract | Links | BibTeX | Tags: EcoOcean, FishMIP
@article{blanchard_detecting_2024,
title = {Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0},
author = {Julia L. Blanchard and Camilla Novaglio and Olivier Maury and Cheryl S. Harrison and Colleen M. Petrik and Denisse Fierro‐Arcos and Kelly Ortega‐Cisneros and Andrea Bryndum‐Buchholz and Tyler D. Eddy and Ryan Heneghan and Kelsey Roberts and Jacob Schewe and Daniele Bianchi and Jerome Guiet and P. Daniel Van Denderen and Juliano Palacios‐Abrantes and Xiao Liu and Charles A. Stock and Yannick Rousseau and Matthias B\"{u}chner and Ezekiel O. Adekoya and Cathy Bulman and William Cheung and Villy Christensen and Marta Coll and Leonardo Capitani and Samik Datta and Elizabeth A. Fulton and Alba Fuster and Victoria Garza and Matthieu Lengaigne and Max Lindmark and Kieran Murphy and Jazel Ouled‐Cheikh and Sowdamini S. Prasad and Ricardo Oliveros‐Ramos and Jonathan C. Reum and Nina Rynne and Kim J. N. Scherrer and Yunne‐Jai Shin and Jeroen Steenbeek and Phoebe Woodworth‐Jefcoats and Yan‐Lun Wu and Derek P. Tittensor},
url = {https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EF004402},
doi = {10.1029/2023EF004402},
issn = {2328-4277, 2328-4277},
year = {2024},
date = {2024-12-01},
urldate = {2025-01-08},
journal = {Earth's Future},
volume = {12},
number = {12},
pages = {e2023EF004402},
abstract = {Abstract
There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long‐term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio‐temporal scales relevant to the Inter‐Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world's fisheries occur. Furthermore, previous FishMIP climate impact projections have been limited by a lack of global standardized historical fishing data, low resolution of coastal processes, and uneven capabilities across the FishMIP community to dynamically model fisheries. These features are needed to evaluate how reliably the FishMIP ensemble captures past ecosystem states ‐ a crucial step for building confidence in future projections. To address these issues, we have developed FishMIP 2.0 comprising a two‐track framework for: (a) Model evaluation and attribution of past changes and (b) future climate and socioeconomic scenario projections. Key advances include improved historical climate forcing, which captures oceanographic features not previously resolved, and standardized global fishing forcing to test fishing effects systematically across models. FishMIP 2.0 is a crucial step toward a detection and attribution framework for changing marine ecosystems and toward enhanced policy relevance through increased confidence in future ensemble projections. Our results will help elucidate pathways toward achieving sustainable development goals.
,
Plain Language Summary
Historically, the largest human impact on the ocean has been overfishing. In the future, it may become climate change. To understand and predict how human activities will affect marine ecosystems in the future, we need models that can be used to accurately detect and attribute the effects of drivers and their impact on past ecosystem trajectories. By doing this, we will build confidence in the ability of sets of these models (“ensembles”) to capture future change. FishMIP 2.0 provides a way to construct and test these ensembles and scenarios of both changing climate and socio‐economic conditions, to better assess how future fisheries could adapt over time.
,
Key Points
Detecting, attributing, and projecting climate change risks on marine ecosystems and fisheries requires models with realistic dynamics
FishMIP 2.0 incorporates fishing and climate impact trajectories to assess models and detect past ecosystem changes more accurately
Our framework will help support model improvement, building confidence in future projections to underpin policy advice},
keywords = {EcoOcean, FishMIP},
pubstate = {published},
tppubtype = {article}
}
There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long‐term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio‐temporal scales relevant to the Inter‐Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world's fisheries occur. Furthermore, previous FishMIP climate impact projections have been limited by a lack of global standardized historical fishing data, low resolution of coastal processes, and uneven capabilities across the FishMIP community to dynamically model fisheries. These features are needed to evaluate how reliably the FishMIP ensemble captures past ecosystem states ‐ a crucial step for building confidence in future projections. To address these issues, we have developed FishMIP 2.0 comprising a two‐track framework for: (a) Model evaluation and attribution of past changes and (b) future climate and socioeconomic scenario projections. Key advances include improved historical climate forcing, which captures oceanographic features not previously resolved, and standardized global fishing forcing to test fishing effects systematically across models. FishMIP 2.0 is a crucial step toward a detection and attribution framework for changing marine ecosystems and toward enhanced policy relevance through increased confidence in future ensemble projections. Our results will help elucidate pathways toward achieving sustainable development goals.
,
Plain Language Summary
Historically, the largest human impact on the ocean has been overfishing. In the future, it may become climate change. To understand and predict how human activities will affect marine ecosystems in the future, we need models that can be used to accurately detect and attribute the effects of drivers and their impact on past ecosystem trajectories. By doing this, we will build confidence in the ability of sets of these models (“ensembles”) to capture future change. FishMIP 2.0 provides a way to construct and test these ensembles and scenarios of both changing climate and socio‐economic conditions, to better assess how future fisheries could adapt over time.
,
Key Points
Detecting, attributing, and projecting climate change risks on marine ecosystems and fisheries requires models with realistic dynamics
FishMIP 2.0 incorporates fishing and climate impact trajectories to assess models and detect past ecosystem changes more accurately
Our framework will help support model improvement, building confidence in future projections to underpin policy advice
Boot, Amber Adore; Steenbeek, Jeroen Gerhard; Coll, Marta; Heydt, Anna S. Von Der; Dijkstra, Henk A.
Global Marine Ecosystem Response to a Strong AMOC Weakening under Low and High Future Emission Scenarios Journal Article
In: Authorea Preprints, 2024.
Links | BibTeX | Tags: EcoOcean
@article{bootGlobalMarineEcosystem2024,
title = {Global Marine Ecosystem Response to a Strong AMOC Weakening under Low and High Future Emission Scenarios},
author = {Amber Adore Boot and Jeroen Gerhard Steenbeek and Marta Coll and Anna S. Von Der Heydt and Henk A. Dijkstra},
doi = {10.22541/essoar.171319366.64840276/v1},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-01},
journal = {Authorea Preprints},
keywords = {EcoOcean},
pubstate = {published},
tppubtype = {article}
}
Blanchard, Julia L.; Novaglio, Camilla; Maury, Olivier; Harrison, Cheryl Shannon; Petrik, Colleen M.; Arcos, L. Denisse Fierro; Ortega-Cisneros, Kelly; Bryndum-Buchholz, Andrea; Eddy, Tyler; Heneghan, Ryan
Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0 Journal Article
In: Authorea Preprints, 2024.
@article{blanchardDetectingAttributingProjecting2024,
title = {Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0},
author = {Julia L. Blanchard and Camilla Novaglio and Olivier Maury and Cheryl Shannon Harrison and Colleen M. Petrik and L. Denisse Fierro Arcos and Kelly Ortega-Cisneros and Andrea Bryndum-Buchholz and Tyler Eddy and Ryan Heneghan},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Authorea Preprints},
publisher = {Authorea},
keywords = {EcoOcean},
pubstate = {published},
tppubtype = {article}
}
Steenbeek, Jeroen; Ortega, Pablo; Bernardello, Raffaele; Christensen, Villy; Coll, Marta; Exarchou, Eleftheria; Fuster-Alonso, Alba; Heneghan, Ryan; Melis, Laura Julià; Pennino, Maria Grazia; Rivas, David; Keenlyside, Noel
In: Earth's Future, vol. 12, no. 3, pp. e2023EF004295, 2024, ISSN: 2328-4277.
Abstract | Links | BibTeX | Tags: distributed execution, EcoOcean, MacGyver, marine ecosystem models, open-source software, systematic assessments
@article{steenbeekMakingEcosystemModeling2024,
title = {Making Ecosystem Modeling Operational \textendash a Novel Distributed Execution Framework to Systematically Explore Ecological Responses to Divergent Climate Trajectories},
author = {Jeroen Steenbeek and Pablo Ortega and Raffaele Bernardello and Villy Christensen and Marta Coll and Eleftheria Exarchou and Alba Fuster-Alonso and Ryan Heneghan and Laura Juli\`{a} Melis and Maria Grazia Pennino and David Rivas and Noel Keenlyside},
doi = {10.1029/2023EF004295},
issn = {2328-4277},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Earth's Future},
volume = {12},
number = {3},
pages = {e2023EF004295},
abstract = {Marine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyze the effects of alternative management efforts for marine ecosystems under potential scenarios of climate change. However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a time span widely used in the global climate modeling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low-tech and freely available technologies to enable the systematic execution and analysis of linked ESM/MEM prediction ensembles. We apply this framework on the seasonal-to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialized decadal ESM predictions affects a mechanistic and spatiotemporal explicit global trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM variability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modeling group with the fundamental capabilities to operationalize marine ecosystem modeling.},
keywords = {distributed execution, EcoOcean, MacGyver, marine ecosystem models, open-source software, systematic assessments},
pubstate = {published},
tppubtype = {article}
}
Eddy, Tyler D.; Heneghan, Ryan F.; Bryndum-Buchholz, Andrea; Fulton, Beth; Harrison, Cheryl Shannon; Tittensor, Derek P.; Lotze, Heike K.; Ortega-Cisneros, Kelly; Novaglio, Camilla; Bianchi, Daniele
Global and regional marine ecosystem model climate change projections reveal key uncertainties Journal Article
In: 2024.
Links | BibTeX | Tags: EcoOcean, Ecospace, FishMIP
@article{eddy_global_2024,
title = {Global and regional marine ecosystem model climate change projections reveal key uncertainties},
author = {Tyler D. Eddy and Ryan F. Heneghan and Andrea Bryndum-Buchholz and Beth Fulton and Cheryl Shannon Harrison and Derek P. Tittensor and Heike K. Lotze and Kelly Ortega-Cisneros and Camilla Novaglio and Daniele Bianchi},
url = {https://hal.science/hal-04811335/},
year = {2024},
date = {2024-01-01},
urldate = {2025-01-08},
keywords = {EcoOcean, Ecospace, FishMIP},
pubstate = {published},
tppubtype = {article}
}
Rynne, Nina; Novaglio, Camilla; Blanchard, Julia L.; Bianchi, Daniele; Christensen, Villy; Coll, Marta; Guiet, Jerome; Steenbeek, Jeroen Gerhard; Bryndum-Buchholz, Andrea; Eddy, Tyler
A skill assessment framework for the fisheries and marine ecosystem model intercomparison project Journal Article
In: Authorea Preprints, 2024, (Publisher: Authorea).
Links | BibTeX | Tags: EcoOcean, FishMIP, systematic skill assessments
@article{rynne_skill_2024,
title = {A skill assessment framework for the fisheries and marine ecosystem model intercomparison project},
author = {Nina Rynne and Camilla Novaglio and Julia L. Blanchard and Daniele Bianchi and Villy Christensen and Marta Coll and Jerome Guiet and Jeroen Gerhard Steenbeek and Andrea Bryndum-Buchholz and Tyler Eddy},
url = {https://essopenarchive.org/doi/full/10.22541/essoar.171580191.17895127},
year = {2024},
date = {2024-01-01},
urldate = {2025-01-08},
journal = {Authorea Preprints},
note = {Publisher: Authorea},
keywords = {EcoOcean, FishMIP, systematic skill assessments},
pubstate = {published},
tppubtype = {article}
}
Miscellaneous
Boot, Amber Adore; Steenbeek, Jeroen Gerhard; Coll, Marta; Heydt, Anna S. Von Der; Dijkstra, Henk A.
Global marine ecosystem response to a strong AMOC weakening under low and high future emission scenarios Miscellaneous
2024.
Abstract | Links | BibTeX | Tags: AMOC, EcoOcean, systematic assessments
@misc{boot_global_2024,
title = {Global marine ecosystem response to a strong AMOC weakening under low and high future emission scenarios},
author = {Amber Adore Boot and Jeroen Gerhard Steenbeek and Marta Coll and Anna S. Von Der Heydt and Henk A. Dijkstra},
url = {https://essopenarchive.org/users/668598/articles/825971-global-marine-ecosystem-response-to-a-strong-amoc-weakening-under-low-and-high-future-emission-scenarios?commit=9e4e97c43e2dde5615a4abd6ee1183814eb56950},
doi = {10.22541/essoar.171319366.64840276/v1},
year = {2024},
date = {2024-04-01},
urldate = {2024-05-02},
abstract = {Marine ecosystems provide essential services to the Earth System and
society. These ecosystems are threatened by anthropogenic activities and
climate change. Climate change increases the risk of passing tipping
points; for example, the Atlantic Meridional Overturning Circulation
(AMOC) might tip under future global warming leading to additional
changes in the climate system. Here, we look at the effect of an AMOC
weakening on marine ecosystems by forcing the Community Earth System
Model v2 (CESM2) with low (SSP1-2.6) and high (SSP5-8.5) emission
scenarios from 2015 to 2100. An additional freshwater flux is added in
the North Atlantic to induce extra weakening of the AMOC. In CESM2, the
AMOC weakening has a large impact on phytoplankton biomass and
temperature fields through various mechanisms that change the supply of
nutrients to the surface ocean. We drive a marine ecosystem model,
EcoOcean, with phytoplankton biomass and temperature fields from CESM2.
In EcoOcean, we see negative impacts in Total System Biomass (TSB),
which are larger for high trophic level organisms. The strongest net
effect is seen in the high emission scenario, but the effect of the
extra AMOC weakening on TSB is larger in the low emission scenario. On
top of anthropogenic climate change, TSB decreases by -3.78% and
-2.03% in SSP1-2.6 and SSP5-8.5, respectively due to the AMOC
weakening. These results show that marine ecosystems will be under
increased threat if the AMOC weakens which might put additional stresses
on socio-economic systems that are dependent on marine biodiversity as a
food and income source.},
keywords = {AMOC, EcoOcean, systematic assessments},
pubstate = {published},
tppubtype = {misc}
}
society. These ecosystems are threatened by anthropogenic activities and
climate change. Climate change increases the risk of passing tipping
points; for example, the Atlantic Meridional Overturning Circulation
(AMOC) might tip under future global warming leading to additional
changes in the climate system. Here, we look at the effect of an AMOC
weakening on marine ecosystems by forcing the Community Earth System
Model v2 (CESM2) with low (SSP1-2.6) and high (SSP5-8.5) emission
scenarios from 2015 to 2100. An additional freshwater flux is added in
the North Atlantic to induce extra weakening of the AMOC. In CESM2, the
AMOC weakening has a large impact on phytoplankton biomass and
temperature fields through various mechanisms that change the supply of
nutrients to the surface ocean. We drive a marine ecosystem model,
EcoOcean, with phytoplankton biomass and temperature fields from CESM2.
In EcoOcean, we see negative impacts in Total System Biomass (TSB),
which are larger for high trophic level organisms. The strongest net
effect is seen in the high emission scenario, but the effect of the
extra AMOC weakening on TSB is larger in the low emission scenario. On
top of anthropogenic climate change, TSB decreases by -3.78% and
-2.03% in SSP1-2.6 and SSP5-8.5, respectively due to the AMOC
weakening. These results show that marine ecosystems will be under
increased threat if the AMOC weakens which might put additional stresses
on socio-economic systems that are dependent on marine biodiversity as a
food and income source.
PhD Theses
Steenbeek, Jeroen; Christensen, Villy; Fulton, Elizabeth A.; Infantes, Manuel Espino
Ecosystem modelling for the ocean decade - facing the challenge PhD Thesis
Universitat Politècnica de Catalunya, 2024.
Abstract | Links | BibTeX | Tags: EcoOcean, Ocean Decade, OceanViz, Software engineering, systematic model calibration, systematic skill assessments
@phdthesis{steenbeek_ecosystem_2024,
title = {Ecosystem modelling for the ocean decade - facing the challenge},
author = {Jeroen Steenbeek and Villy Christensen and Elizabeth A. Fulton and Manuel Espino Infantes},
url = {http://hdl.handle.net/2117/417801},
doi = {10.5821/dissertation-2117-417801},
year = {2024},
date = {2024-10-01},
urldate = {2025-01-07},
school = {Universitat Polit\`{e}cnica de Catalunya},
abstract = {(English) The worlds’marine ecosystems are degrading under wide ranges of ever intensifying, diversifying and co-occurring human pressures. Ecosystem-based management (EBM) approaches have emerged as an alternative to ineffective single species and single sector management, veering away from siloed top-down approaches towards science-based, participatory processes that recognise connections across the system and seek to balance economic benefits with sustainably harvested and healthy ecosystems. To galvanize a global push towards EBM, the United Nations declaration of the Decade of Ocean Science for Sustainable Development (Ocean Decade) has given the oceanographic community a unique imperative to transform marine sciences into holistic, participatory, transparent and inclusive forms that involve and serve society.
Transforming actual ocean sciences is easier said than done. Marine Ecosystem Models or MEMs are powerful mathematical tools for understanding past marine ecosystem and their dynamics under cumulative pressures, and have utility for predicting how ecosystems may continue to develop under scenarios of change. MEMs are widely used in science, and have significant utility to advice decision making and policy. However, despite decades of scientific progress, and despite an abundance of scientific recipes in the literature that can be deployed towards the aims of the Ocean Decade, the actual uptake of MEMs in management remains low.
This dissertation explores why this is, and argues that the actual uptake of MEMs in policy and society is in part hampered by a factor largely ignored by the marine sciences: technical issues, institutionalized by the current competitive and
achievement-driven academic funding model. The dissertation is based on four manuscripts, which explore the specific challenges raised by the Ocean Decade, and define and implement working prototypes to demonstrate that the gap between theory and practice can be bridged.
The first challenge, enabling decision processes to use MEMs, is addressed in manuscript 1 where a MEM is integrated into a decision support tool for marine spatial planning, beyond the operational control of marine scientists. The second challenge, related to meaningfully communicating MEM output to outside audiences, is addressed in manuscript 2 where a MEM is interconnected with a 3D gaming engine to empathically visualize environmental change. The last challenge, making sure that MEM output is robust, is discussed in manuscripts 3 and 4. Of these, the first manuscript explores the reasons behind lack of systematic MEM assessments and puts forth a potential framework to overcome this 30-year old limitation. Manuscript 4 introduces a working and open-source prototype of that framework.
Overall, these studies show that relatively simple software engineering can empower the use of MEMs towards the aims of the Ocean Decade, EBM, and beyond. This dissertation underscores that scientific and technical developments must go hand in hand, but also suggests that the status quo may not change unless long-term tool development and support become academic funding priorities. Last, although the prototypes developed in this dissertation should be taken as ideas that need further maturing in future research, the ideas throughout irrevocably demonstrate that the field of marine ecosystem modelling with relatively simple means can be made operational for the Ocean Decade. If anything, this dissertation is a rallying cry to the global marine ecosystem modelling community to rethink and reshape how we build, validate, calibrate and deploy our tools, with the aim to reach and involve the audiences that need marine science advice but do not have the means to generate it.
(Catal\`{a}) Els ecosistemes marins del m\'{o}n s'estan degradant sota un ampli ventall de pressions humanes combinades que s'intensifiquen i es diversifiquen. Els enfocaments de gesti\'{o} basada en ecosistemes (EBM) han sorgit com una alternativa a la gesti\'{o} inefica\c{c}, transitant des d´enfocaments sectorials de dalt a baix cap a processos participatius recolzats en la ci\`{e}ncia que reconeixen connexions a nivell de tot el sistema i busquen equilibrar el benefici econ\`{o}mic amb ecosistemes saludables i sostenibles. El Decenni de les Ci\`{e}ncies Oce\`{a}niques per al Desenvolupament Sostenible de les Nacions Unides ha traslladat a la comunitat oceanogr\`{a}fica l´imperatiu de transformar les ci\`{e}ncies marines mitjan\c{c}ant enfocaments hol\'{i}stics, participatius, transparents i inclusius que involucrin i serveixin a la societat.
Transformar les ci\`{e}ncies oce\`{a}niques actuals \'{e}s dif\'{i}cil. Els models d'ecosistemes marins (MEM) s\'{o}n eines matem\`{a}tiques poderoses per comprendre la din\`{a}mica passada dels ecosistemes marins i el seu canvi sota pressions acumulatives, i capaces de predir com els ecosistemes poden continuar desenvolupant-se en escenaris canviants. Els MEM s'utilitzen \`{a}mpliament en ci\`{e}ncia i tenen una gran utilitat per assessorar pol\'{i}tiques i prendre decisions. No obstant aix\`{o}, malgrat d\`{e}cades de progr\'{e}s i de l'abund\`{a}ncia de recomanacions cient\'{i}fiques que poden implementar-se per aconseguir els objectius del Decenni dels Oceans, l'adopci\'{o} real dels MEM en la gesti\'{o} continua sent baixa.
Aquesta tesi explora les raons d'aquesta situaci\'{o} i sost\'{e} que l'adopci\'{o} real dels MEM en les pol\'{i}tiques i la societat es veu en part obstaculitzada per un factor ignorat en gran part per les ci\`{e}ncies marines: els problemes t\`{e}cnics, institucionalitzats pel model actual de finan\c{c}ament acad\`{e}mic competitiu i orientat a resultats. La tesi es basa en quatre manuscrits, que exploren els desafiaments espec\'{i}fics que planteja la d\`{e}cada dels oceans i defineixen i implementen prototips funcionals que mostren que es pot salvar la bretxa entre la teoria i la pr\`{a}ctica.
El primer desafiament, permetre que els processos de decisi\'{o} utilitzin MEM, s'aborda al manuscrit 1, on un MEM s'integra en una eina de suport a la decisi\'{o} per a la planificaci\'{o} de l'espai mar\'{i}, sense necessitat de control operatiu dels cient\'{i}fics marins. El segon desafiament, relacionat amb la comunicaci\'{o} significativa de la sortida del MEM a audi\`{e}ncies externes, s'aborda al manuscrit 2, en el qual un MEM s’interconnecta amb un motor de joc 3D per mostrar visualment el canvi ambiental. El desafiament final, garantir que els resultats del MEM siguin s\`{o}lids, es discuteix en els manuscrits 3 i 4. D'aquests, el primer explora les raons de la manca d'avaluacions sistem\`{a}tiques dels MEM i proposa un marc potencial per superar aquesta limitaci\'{o} persistent, mentre que el segon presenta un prototip funcional de codi obert d'aquest marc.
En conjunt, aquests estudis mostren que una enginyeria de programari relativament senzilla pot potenciar l'\'{u}s de MEM per als objectius de la d\`{e}cada oce\`{a}nica, l’EBM i m\'{e}s enll\`{a}. Aquesta tesi subratlla que els avan\c{c}os cient\'{i}fics i t\`{e}cnics han d'anar de bracet, per\`{o} tamb\'{e} suggereix que el l'estancament actual no pot canviar tret que el desenvolupament i el suport a llarg termini a les eines sigui una prioritat de finan\c{c}ament. Encara que els prototips desenvolupats en aquesta tesi han de prendre´s com a idees que necessiten madurar-se m\'{e}s en futures investigacions, els treballs presentats mostren amb claredat que la modelitzaci\'{o} d'ecosistemes marins amb mitjans relativament senzills pot fer-se operativa per a la D\`{e}cada dels Oceans.
Finalment, aquest treball \'{e}s una crida urgent a la comunitat mundial de modelitzaci\'{o} d'ecosistemes marins per repensar i remodelar com constru\"{i}m, validem, calibrem i despleguem les nostres eines, amb l'objectiu d'arribar i implicar a les audi\`{e}ncies que necessitin aquest assessorament.
(Espa\~{n}ol) Los ecosistemas marinos del mundo se est\'{a}n degradando por efecto de una amplia gama de presiones humanas combinadas que se intensifican y diversifican. Los enfoques de gesti\'{o}n basada en ecosistemas (EBM) han surgido como alternativa a la gesti\'{o}n ineficaz, transitando desde enfoques sectoriales basados en una l\'{o}gica de arriba-abajo hacia procesos participativos apoyados en la ciencia que reconocen conexiones a nivel de todo el sistema y buscan equilibrar el beneficio econ\'{o}mico con ecosistemas saludables y sostenibles. El Decenio de las Ciencias Oce\'{a}nicas para el Desarrollo Sostenible de las Naciones Unidas ha trasladado a la comunidad oceanogr\'{a}fica el imperativo de transformar las ciencias marinas con enfoques hol\'{i}sticos, participativos, transparentes e inclusivos que involucren y sirvan a la sociedad.
Transformar las ciencias oce\'{a}nicas actuales es dif\'{i}cil. Los modelos de ecosistemas marinos (MEM) son herramientas matem\'{a}ticas poderosas para comprender la din\'{a}mica pasada de los ecosistemas marinos y su cambio bajo presiones acumulativas, y capaces de predecir c\'{o}mo los ecosistemas pueden continuar desarroll\'{a}ndose en escenarios cambiantes. Los MEM se utilizan ampliamente en ciencia y tienen una gran utilidad para asesorar pol\'{i}ticas y tomar decisiones. Sin embargo, a pesar de d\'{e}cadas de progreso y de la abundancia de recomendaciones en la literatura cient\'{i}fica que pueden implementarse para alcanzar los objetivos del Decenio de los Oc\'{e}anos, la adopci\'{o}n real de los MEM en la gesti\'{o}n sigue siendo baja.
Esta tesis explora las razones de esta situaci\'{o}n y sostiene que la adopci\'{o}n real de los MEM en las pol\'{i}ticas y la sociedad se ve obstaculizada en parte por un factor ignorado en gran medida por las ciencias marinas: los problemas t\'{e}cnicos, institucionalizados por el modelo actual de financiaci\'{o}n acad\'{e}mica competitiva y orientada a resultados. La tesis se basa en cuatro manuscritos que exploran los desaf\'{i}os espec\'{i}ficos que plantea la D\'{e}cada de los Oc\'{e}anos y definen e implementan prototipos funcionales que muestran que se puede cerrar la brecha entre la teor\'{i}a y la pr\'{a}ctica.
El primer desaf\'{i}o, permitir que los procesos de decisi\'{o}n utilicen MEM, se aborda en el manuscrito 1, en el que un MEM se integra en una herramienta de apoyo a la toma de decisiones para la planificaci\'{o}n espacial marina, sin necesidad de control operativo de los cient\'{i}ficos marinos. El segundo desaf\'{i}o, relacionado con la comunicaci\'{o}n efectiva de los resultados de MEM a audiencias externas, se aborda en el manuscrito 2, en el que un MEM se interconecta con un motor de juego 3D para mostrar visualmente el cambio ambiental. El desaf\'{i}o final, garantizar que los resultados del MEM sean s\'{o}lidos, se analiza en los manuscritos 3 y 4. De estos, el primero explora las razones de la falta de evaluaciones sistem\'{a}ticas del MEM y propone un marco para superar esta limitaci\'{o}n persistente, mientras que el segundo presenta un prototipo funcional de c\'{o}digo abierto de este marco.
En conjunto, estos estudios muestran que una ingenier\'{i}a de software relativamente sencilla puede potenciar el uso de MEM hacia los objetivos de la D\'{e}cada de los Oc\'{e}anos, la EBM y m\'{a}s all\'{a}. Esta tesis subraya que los avances cient\'{i}ficos y t\'{e}cnicos deben ir de la mano, pero tambi\'{e}n sugiere que el statu quo puede no cambiar a menos que el apoyo a largo plazo a las herramientas sea una prioridad de financiaci\'{o}n. Por \'{u}ltimo, aunque los prototipos desarrollados en esta tesis deben tomarse como ideas que necesitan madurarse m\'{a}s, los trabajos presentados muestran inequ\'{i}vocamente que el campo de la modelizaci\'{o}n de ecosistemas marinos con medios relativamente simples puede hacerse operativo para el Decenio de los Oc\'{e}anos. Finalmente, este trabajo aspira a motivar a la comunidad mundial de modelizaci\'{o}n de ecosistemas marinos para repensar c\'{o}mo construimos, validamos, calibramos e implementamos nuestras herramientas, con el objetivo de llegar e involucrar a las audiencias que necesiten ese asesoramiento.},
keywords = {EcoOcean, Ocean Decade, OceanViz, Software engineering, systematic model calibration, systematic skill assessments},
pubstate = {published},
tppubtype = {phdthesis}
}
Transforming actual ocean sciences is easier said than done. Marine Ecosystem Models or MEMs are powerful mathematical tools for understanding past marine ecosystem and their dynamics under cumulative pressures, and have utility for predicting how ecosystems may continue to develop under scenarios of change. MEMs are widely used in science, and have significant utility to advice decision making and policy. However, despite decades of scientific progress, and despite an abundance of scientific recipes in the literature that can be deployed towards the aims of the Ocean Decade, the actual uptake of MEMs in management remains low.
This dissertation explores why this is, and argues that the actual uptake of MEMs in policy and society is in part hampered by a factor largely ignored by the marine sciences: technical issues, institutionalized by the current competitive and
achievement-driven academic funding model. The dissertation is based on four manuscripts, which explore the specific challenges raised by the Ocean Decade, and define and implement working prototypes to demonstrate that the gap between theory and practice can be bridged.
The first challenge, enabling decision processes to use MEMs, is addressed in manuscript 1 where a MEM is integrated into a decision support tool for marine spatial planning, beyond the operational control of marine scientists. The second challenge, related to meaningfully communicating MEM output to outside audiences, is addressed in manuscript 2 where a MEM is interconnected with a 3D gaming engine to empathically visualize environmental change. The last challenge, making sure that MEM output is robust, is discussed in manuscripts 3 and 4. Of these, the first manuscript explores the reasons behind lack of systematic MEM assessments and puts forth a potential framework to overcome this 30-year old limitation. Manuscript 4 introduces a working and open-source prototype of that framework.
Overall, these studies show that relatively simple software engineering can empower the use of MEMs towards the aims of the Ocean Decade, EBM, and beyond. This dissertation underscores that scientific and technical developments must go hand in hand, but also suggests that the status quo may not change unless long-term tool development and support become academic funding priorities. Last, although the prototypes developed in this dissertation should be taken as ideas that need further maturing in future research, the ideas throughout irrevocably demonstrate that the field of marine ecosystem modelling with relatively simple means can be made operational for the Ocean Decade. If anything, this dissertation is a rallying cry to the global marine ecosystem modelling community to rethink and reshape how we build, validate, calibrate and deploy our tools, with the aim to reach and involve the audiences that need marine science advice but do not have the means to generate it.
(Català) Els ecosistemes marins del món s'estan degradant sota un ampli ventall de pressions humanes combinades que s'intensifiquen i es diversifiquen. Els enfocaments de gestió basada en ecosistemes (EBM) han sorgit com una alternativa a la gestió ineficaç, transitant des d´enfocaments sectorials de dalt a baix cap a processos participatius recolzats en la ciència que reconeixen connexions a nivell de tot el sistema i busquen equilibrar el benefici econòmic amb ecosistemes saludables i sostenibles. El Decenni de les Ciències Oceàniques per al Desenvolupament Sostenible de les Nacions Unides ha traslladat a la comunitat oceanogràfica l´imperatiu de transformar les ciències marines mitjançant enfocaments holístics, participatius, transparents i inclusius que involucrin i serveixin a la societat.
Transformar les ciències oceàniques actuals és difícil. Els models d'ecosistemes marins (MEM) són eines matemàtiques poderoses per comprendre la dinàmica passada dels ecosistemes marins i el seu canvi sota pressions acumulatives, i capaces de predir com els ecosistemes poden continuar desenvolupant-se en escenaris canviants. Els MEM s'utilitzen àmpliament en ciència i tenen una gran utilitat per assessorar polítiques i prendre decisions. No obstant això, malgrat dècades de progrés i de l'abundància de recomanacions científiques que poden implementar-se per aconseguir els objectius del Decenni dels Oceans, l'adopció real dels MEM en la gestió continua sent baixa.
Aquesta tesi explora les raons d'aquesta situació i sosté que l'adopció real dels MEM en les polítiques i la societat es veu en part obstaculitzada per un factor ignorat en gran part per les ciències marines: els problemes tècnics, institucionalitzats pel model actual de finançament acadèmic competitiu i orientat a resultats. La tesi es basa en quatre manuscrits, que exploren els desafiaments específics que planteja la dècada dels oceans i defineixen i implementen prototips funcionals que mostren que es pot salvar la bretxa entre la teoria i la pràctica.
El primer desafiament, permetre que els processos de decisió utilitzin MEM, s'aborda al manuscrit 1, on un MEM s'integra en una eina de suport a la decisió per a la planificació de l'espai marí, sense necessitat de control operatiu dels científics marins. El segon desafiament, relacionat amb la comunicació significativa de la sortida del MEM a audiències externes, s'aborda al manuscrit 2, en el qual un MEM s’interconnecta amb un motor de joc 3D per mostrar visualment el canvi ambiental. El desafiament final, garantir que els resultats del MEM siguin sòlids, es discuteix en els manuscrits 3 i 4. D'aquests, el primer explora les raons de la manca d'avaluacions sistemàtiques dels MEM i proposa un marc potencial per superar aquesta limitació persistent, mentre que el segon presenta un prototip funcional de codi obert d'aquest marc.
En conjunt, aquests estudis mostren que una enginyeria de programari relativament senzilla pot potenciar l'ús de MEM per als objectius de la dècada oceànica, l’EBM i més enllà. Aquesta tesi subratlla que els avanços científics i tècnics han d'anar de bracet, però també suggereix que el l'estancament actual no pot canviar tret que el desenvolupament i el suport a llarg termini a les eines sigui una prioritat de finançament. Encara que els prototips desenvolupats en aquesta tesi han de prendre´s com a idees que necessiten madurar-se més en futures investigacions, els treballs presentats mostren amb claredat que la modelització d'ecosistemes marins amb mitjans relativament senzills pot fer-se operativa per a la Dècada dels Oceans.
Finalment, aquest treball és una crida urgent a la comunitat mundial de modelització d'ecosistemes marins per repensar i remodelar com construïm, validem, calibrem i despleguem les nostres eines, amb l'objectiu d'arribar i implicar a les audiències que necessitin aquest assessorament.
(Español) Los ecosistemas marinos del mundo se están degradando por efecto de una amplia gama de presiones humanas combinadas que se intensifican y diversifican. Los enfoques de gestión basada en ecosistemas (EBM) han surgido como alternativa a la gestión ineficaz, transitando desde enfoques sectoriales basados en una lógica de arriba-abajo hacia procesos participativos apoyados en la ciencia que reconocen conexiones a nivel de todo el sistema y buscan equilibrar el beneficio económico con ecosistemas saludables y sostenibles. El Decenio de las Ciencias Oceánicas para el Desarrollo Sostenible de las Naciones Unidas ha trasladado a la comunidad oceanográfica el imperativo de transformar las ciencias marinas con enfoques holísticos, participativos, transparentes e inclusivos que involucren y sirvan a la sociedad.
Transformar las ciencias oceánicas actuales es difícil. Los modelos de ecosistemas marinos (MEM) son herramientas matemáticas poderosas para comprender la dinámica pasada de los ecosistemas marinos y su cambio bajo presiones acumulativas, y capaces de predecir cómo los ecosistemas pueden continuar desarrollándose en escenarios cambiantes. Los MEM se utilizan ampliamente en ciencia y tienen una gran utilidad para asesorar políticas y tomar decisiones. Sin embargo, a pesar de décadas de progreso y de la abundancia de recomendaciones en la literatura científica que pueden implementarse para alcanzar los objetivos del Decenio de los Océanos, la adopción real de los MEM en la gestión sigue siendo baja.
Esta tesis explora las razones de esta situación y sostiene que la adopción real de los MEM en las políticas y la sociedad se ve obstaculizada en parte por un factor ignorado en gran medida por las ciencias marinas: los problemas técnicos, institucionalizados por el modelo actual de financiación académica competitiva y orientada a resultados. La tesis se basa en cuatro manuscritos que exploran los desafíos específicos que plantea la Década de los Océanos y definen e implementan prototipos funcionales que muestran que se puede cerrar la brecha entre la teoría y la práctica.
El primer desafío, permitir que los procesos de decisión utilicen MEM, se aborda en el manuscrito 1, en el que un MEM se integra en una herramienta de apoyo a la toma de decisiones para la planificación espacial marina, sin necesidad de control operativo de los científicos marinos. El segundo desafío, relacionado con la comunicación efectiva de los resultados de MEM a audiencias externas, se aborda en el manuscrito 2, en el que un MEM se interconecta con un motor de juego 3D para mostrar visualmente el cambio ambiental. El desafío final, garantizar que los resultados del MEM sean sólidos, se analiza en los manuscritos 3 y 4. De estos, el primero explora las razones de la falta de evaluaciones sistemáticas del MEM y propone un marco para superar esta limitación persistente, mientras que el segundo presenta un prototipo funcional de código abierto de este marco.
En conjunto, estos estudios muestran que una ingeniería de software relativamente sencilla puede potenciar el uso de MEM hacia los objetivos de la Década de los Océanos, la EBM y más allá. Esta tesis subraya que los avances científicos y técnicos deben ir de la mano, pero también sugiere que el statu quo puede no cambiar a menos que el apoyo a largo plazo a las herramientas sea una prioridad de financiación. Por último, aunque los prototipos desarrollados en esta tesis deben tomarse como ideas que necesitan madurarse más, los trabajos presentados muestran inequívocamente que el campo de la modelización de ecosistemas marinos con medios relativamente simples puede hacerse operativo para el Decenio de los Océanos. Finalmente, este trabajo aspira a motivar a la comunidad mundial de modelización de ecosistemas marinos para repensar cómo construimos, validamos, calibramos e implementamos nuestras herramientas, con el objetivo de llegar e involucrar a las audiencias que necesiten ese asesoramiento.
2021
Journal Articles
Tittensor, D. P.; Novaglio, C.; Harrison, C. S.; Heneghan, R. F.; Barrier, N.; Bianchi, D.; Bopp, L.; Bryndum-Buchholz, A.; Britten, G. L.; Büchner, M.; Cheung, W. W. L.; Christensen, V.; Coll, M.; Dunne, J. P.; Eddy, T. D.; Everett, J. D.; Fernandes-Salvador, J. A.; Fulton, E. A.; Galbraith, E. D.; Gascuel, D.; Guiet, J.; John, J. G.; Link, J. S.; Lotze, H. K.; Maury, O.; Ortega-Cisneros, K.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Rault, J.; Richardson, A. J.; Shannon, L. J.; Shin, Y-J; Steenbeek, J.; Stock, C. A.; Blanchard, J. L.
Next-generation ensemble projections reveal higher climate risks for marine ecosystems Journal Article
In: Nature Climate Change, pp. 1–9, 2021, ISSN: 1758-6798, (Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate-change ecology;Ecological modelling;Marine biology Subject_term_id: climate-change-ecology;ecological-modelling;marine-biology).
Links | BibTeX | Tags: Climate-change ecology, ecological modelling, EcoOcean, Marine biology
@article{tittensor_next-generation_2021,
title = {Next-generation ensemble projections reveal higher climate risks for marine ecosystems},
author = {D. P. Tittensor and C. Novaglio and C. S. Harrison and R. F. Heneghan and N. Barrier and D. Bianchi and L. Bopp and A. Bryndum-Buchholz and G. L. Britten and M. B\"{u}chner and W. W. L. Cheung and V. Christensen and M. Coll and J. P. Dunne and T. D. Eddy and J. D. Everett and J. A. Fernandes-Salvador and E. A. Fulton and E. D. Galbraith and D. Gascuel and J. Guiet and J. G. John and J. S. Link and H. K. Lotze and O. Maury and K. Ortega-Cisneros and J. Palacios-Abrantes and C. Petrik and H. Pontavice and J. Rault and A. J. Richardson and L. J. Shannon and Y-J Shin and J. Steenbeek and C. A. Stock and J. L. Blanchard},
url = {https://www.nature.com/articles/s41558-021-01173-9},
doi = {10.1038/s41558-021-01173-9},
issn = {1758-6798},
year = {2021},
date = {2021-10-01},
urldate = {2021-10-01},
journal = {Nature Climate Change},
pages = {1--9},
note = {Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate-change ecology;Ecological modelling;Marine biology Subject_term_id: climate-change-ecology;ecological-modelling;marine-biology},
keywords = {Climate-change ecology, ecological modelling, EcoOcean, Marine biology},
pubstate = {published},
tppubtype = {article}
}
Heneghan, R. F.; Galbraith, E. D.; Blanchard, J. L.; Harrison, C.; Barrier, N.; Bulman, C.; Cheung, W. W. L.; Coll, M.; Eddy, T. D.; Erauskin-Extramiana, M.; Everett, J. D.; Fernandes-Salvador, J. A.; Gascuel, D.; Guiet, J.; Maury, O.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Richardson, A. J.; Steenbeek, J.; Tai, T. C.; Volkholz, J.; Woodworth-Jefcoats, P. A.; Tittensor, D. P.
Disentangling diverse responses to climate change among global marine ecosystem models Journal Article
In: Progress in Oceanography, pp. 102659, 2021, ISSN: 0079-6611.
Links | BibTeX | Tags: Climatic change, EcoOcean, Fishery oceanography, FishMIP, Marine ecology, Modelling, Structural uncertainty
@article{heneghan_disentangling_2021,
title = {Disentangling diverse responses to climate change among global marine ecosystem models},
author = {R. F. Heneghan and E. D. Galbraith and J. L. Blanchard and C. Harrison and N. Barrier and C. Bulman and W. W. L. Cheung and M. Coll and T. D. Eddy and M. Erauskin-Extramiana and J. D. Everett and J. A. Fernandes-Salvador and D. Gascuel and J. Guiet and O. Maury and J. Palacios-Abrantes and C. Petrik and H. Pontavice and A. J. Richardson and J. Steenbeek and T. C. Tai and J. Volkholz and P. A. Woodworth-Jefcoats and D. P. Tittensor},
url = {https://www.sciencedirect.com/science/article/pii/S0079661121001440},
doi = {10.1016/j.pocean.2021.102659},
issn = {0079-6611},
year = {2021},
date = {2021-08-01},
urldate = {2021-08-01},
journal = {Progress in Oceanography},
pages = {102659},
keywords = {Climatic change, EcoOcean, Fishery oceanography, FishMIP, Marine ecology, Modelling, Structural uncertainty},
pubstate = {published},
tppubtype = {article}
}
2020
Journal Articles
Coll, M.; Steenbeek, J.; Pennino, M. Grazia; Buszowski, J.; Kaschner, K.; Lotze, H. K.; Rousseau, Y.; Tittensor, D. P.; Walters, C. J.; Watson, R.; Christensen, V.
Advancing global ecological modelling capabilities to simulate future trajectories of change in marine ecosystems Journal Article
In: Frontiers in Marine Science, vol. 7, 2020, ISSN: 2296-7745, (Publisher: Frontiers).
Abstract | Links | BibTeX | Tags: EcoOcean, futures scenarios, global study, internal hypotheses
@article{coll_advancing_2020,
title = {Advancing global ecological modelling capabilities to simulate future trajectories of change in marine ecosystems},
author = { M. Coll and J. Steenbeek and M. Grazia Pennino and J. Buszowski and K. Kaschner and H. K. Lotze and Y. Rousseau and D. P. Tittensor and C. J. Walters and R. Watson and V. Christensen},
url = {https://www.frontiersin.org/articles/10.3389/fmars.2020.567877/abstract},
doi = {10.3389/fmars.2020.567877},
issn = {2296-7745},
year = {2020},
date = {2020-08-13},
urldate = {2020-08-13},
journal = {Frontiers in Marine Science},
volume = {7},
abstract = {Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean’s biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modelling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modelling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.},
note = {Publisher: Frontiers},
keywords = {EcoOcean, futures scenarios, global study, internal hypotheses},
pubstate = {published},
tppubtype = {article}
}
Technical Reports
Waldron, A.; Adams, V.; Allan, J.; Arnell, A.; Asner, G.; Atkinson, S.; Baccini, A.; Baillie, J. E. M.; Balmford, A.; Beau, J. A.; Brander, L.; Brondizio, E.; Bruner, A.; Burgess, N. D.; Burkart, K.; Butchart, S. H. M.; Button, R.; Carrasco, R.; Cheung, W. W. L.; Christensen, V.; Clements, A.; Coll, M.; di Marco, M.; Deguignet, M.; Dinerstein, E.; Ellis, E.; Eppink, F.; Ervin, J.; Escobedo, A.; Fa, J.; Fernandes-Llamazares, A.; Fernando, S.; Fujimori, S.; Fulton, E. A.; Garnett, S.; Gerber, J.; Gill, D.; Gopalakrishna, T.; Hahn, N.; Halpern, B.; Hasegawa, T.; Havlik, P.; Heikinheimo, V.; Heneghan, R. F.; Henry, E.; Humpenoder, F.; Jonas, H.; Jones, K. R.; Joppa, J.; Joshi, A. R.; Jung, M.; Kingston, N.; Klein, C. J.; Krisztin, T.; Lam, V.; Leclere, D.; Lindsey, P.; Locke, H.; Lovejoy, T.; Madgwick, P.; Malhi, Y.; Malmer, P.; Maron, M.; Mayorga, J.; van Meijl, H.; Miller, D.; Molnar, Z.; Mueller, N.; Mukherjee, N.; Naidoo, R.; Nakamura, K.; Nepal, P.; Noss, R.; O’Leary, B.; Olson, D.; Abrantes, J. Palcios; Paxton, M.; Popp, A.; Possingham, H.; Prestemon, J.; Reside, A.; Robinson, C.; Robinson, J.; Sala, E.; Scherrer, K.; Spalding, M. D.; Spenceley, A.; Steenbeek, J.; Stehfest, E.; Strassborg, B.; Sumaila, R.; Swinnerton, K.; Sze, J.; Tittensor, D. P.; Toivonen, T.; Toledo, A.; Torres, P. Negret; van Zeist, W-J; Vause, J.; Venter, O.; Vilela, T.; Visconti, P.; Vynne, C.; Watson, R.; Watson, J.; Wikramanayake, E.; William, B.; Wintle, B. A.; Woodley, S.; Wu, W.; Zander, K.; Zhang, Y.; Zhang, Y.
Campaign for nature 2020.
Links | BibTeX | Tags: EcoOcean, ecosystem services, fisheries, global study
@techreport{waldron_2020_thirtypct,
title = {Protecting 30% of the planet for nature: costs, benefits and economic implications. Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework},
author = {A. Waldron and V. Adams and J. Allan and A. Arnell and G. Asner and S. Atkinson and A. Baccini and J. E. M. Baillie and A. Balmford and J. A. Beau and L. Brander and E. Brondizio and A. Bruner and N. D. Burgess and K. Burkart and S. H. M. Butchart and R. Button and R. Carrasco and W. W. L. Cheung and V. Christensen and A. Clements and M. Coll and M. di Marco and M. Deguignet and E. Dinerstein and E. Ellis and F. Eppink and J. Ervin and A. Escobedo and J. Fa and A. Fernandes-Llamazares and S. Fernando and S. Fujimori and E. A. Fulton and S. Garnett and J. Gerber and D. Gill and T. Gopalakrishna and N. Hahn and B. Halpern and T. Hasegawa and P. Havlik and V. Heikinheimo and R. F. Heneghan and E. Henry and F. Humpenoder and H. Jonas and K. R. Jones and J. Joppa and A. R. Joshi and M. Jung and N. Kingston and C. J. Klein and T. Krisztin and V. Lam and D. Leclere and P. Lindsey and H. Locke and T. Lovejoy and P. Madgwick and Y. Malhi and P. Malmer and M. Maron and J. Mayorga and H. van Meijl and D. Miller and Z. Molnar and N. Mueller and N. Mukherjee and R. Naidoo and K. Nakamura and P. Nepal and R. Noss and B. O’Leary and D. Olson and J. Palcios Abrantes and M. Paxton and A. Popp and H. Possingham and J. Prestemon and A. Reside and C. Robinson and J. Robinson and E. Sala and K. Scherrer and M. D. Spalding and A. Spenceley and J. Steenbeek and E. Stehfest and B. Strassborg and R. Sumaila and K. Swinnerton and J. Sze and D. P. Tittensor and T. Toivonen and A. Toledo and P. Negret Torres and W-J van Zeist and J. Vause and O. Venter and T. Vilela and P. Visconti and C. Vynne and R. Watson and J. Watson and E. Wikramanayake and B. William and B. A. Wintle and S. Woodley and W. Wu and K. Zander and Y. Zhang and Y. Zhang},
url = {https://www.campaignfornature.org/protecting-30-of-the-planet-for-nature-economic-analysis},
year = {2020},
date = {2020-07-17},
urldate = {2020-07-17},
institution = {Campaign for nature},
keywords = {EcoOcean, ecosystem services, fisheries, global study},
pubstate = {published},
tppubtype = {techreport}
}
2019
Journal Articles
Lotze, H. K.; Tittensor, D. P.; Bryndum-Buchholz, A.; Eddy, T. D.; Cheung, W. W. L.; Galbraith, E. D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.; Bopp, L.; Büchner, M.; Bulman, C.; Carozza, D.; Christensen, V.; Coll, M.; Dunne, J. P.; Fulton, E. A.; Jennings, S.; Jones, M.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Fernandes, J. A.; Schewe, J.; Shin, Y-J; Silva, T.; Steenbeek, J.; Stock, C. A.; Verley, P.; Volkholz, J.; Walker, N. D.; Worm, B.
Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change Journal Article
In: Proceedings of the National Academy of Sciences, pp. 201900194, 2019, ISSN: 0027-8424, 1091-6490.
Abstract | Links | BibTeX | Tags: climate change impacts, EcoOcean, ensemble modelling, Fish-MIP, food web, global study, model intercomparison, uncertainty
@article{lotze_global_2019,
title = {Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change},
author = {H. K. Lotze and D. P. Tittensor and A. Bryndum-Buchholz and T. D. Eddy and W. W. L. Cheung and E. D. Galbraith and M. Barange and N. Barrier and D. Bianchi and J. Blanchard and L. Bopp and M. B\"{u}chner and C. Bulman and D. Carozza and V. Christensen and M. Coll and J. P. Dunne and E. A. Fulton and S. Jennings and M. Jones and S. Mackinson and O. Maury and S. Niiranen and R. Oliveros-Ramos and T. Roy and J. A. Fernandes and J. Schewe and Y-J Shin and T. Silva and J. Steenbeek and C. A. Stock and P. Verley and J. Volkholz and N. D. Walker and B. Worm},
url = {https://www.pnas.org/content/early/2019/06/10/1900194116},
doi = {10.1073/pnas.1900194116},
issn = {0027-8424, 1091-6490},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Proceedings of the National Academy of Sciences},
pages = {201900194},
abstract = {While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.},
keywords = {climate change impacts, EcoOcean, ensemble modelling, Fish-MIP, food web, global study, model intercomparison, uncertainty},
pubstate = {published},
tppubtype = {article}
}
Schewe, J.; Gosling, S. N.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H. K.; Seneviratne, S.; van Vliet, M. T. H.; Vautard, R.; Wada, Y.; Breuer, L.; Büchner, M.; Carozza, D. A.; Chang, J.; Coll, M.; Deryng, D.; de Wit, A.; Eddy, T. D.; Folberth, C.; Frieler, K.; Friend, A. D.; Gerten, D.; Gudmundsson, L.; Hanasaki, N.; Ito, A.; Khabarov, N.; Kim, H.; Lawrence, P.; Morfopoulos, C.; Müller, C.; Schmied, H. Müller; Orth, R.; Ostberg, S.; Pokhrel, Y.; Pugh, T. A. M.; Sakurai, G.; Satoh, Y.; Schmid, E.; Stacke, T.; Steenbeek, J.; Steinkamp, J.; Tang, Q.; Tian, H.; Tittensor, D. P.; Volkholz, J.; Wang, X.; Warszawski, L.
State-of-the-art global models underestimate impacts from climate extremes Journal Article
In: Nature Communications, 2019.
BibTeX | Tags: climate change impacts, EcoOcean, ensemble modelling, Fish-MIP, futures scenarios, global study
@article{schewe_state---art_2019,
title = {State-of-the-art global models underestimate impacts from climate extremes},
author = {J. Schewe and S. N. Gosling and C. Reyer and F. Zhao and P. Ciais and J. Elliott and L. Francois and V. Huber and H. K. Lotze and S. Seneviratne and M. T. H. van Vliet and R. Vautard and Y. Wada and L. Breuer and M. B\"{u}chner and D. A. Carozza and J. Chang and M. Coll and D. Deryng and A. de Wit and T. D. Eddy and C. Folberth and K. Frieler and A. D. Friend and D. Gerten and L. Gudmundsson and N. Hanasaki and A. Ito and N. Khabarov and H. Kim and P. Lawrence and C. Morfopoulos and C. M\"{u}ller and H. M\"{u}ller Schmied and R. Orth and S. Ostberg and Y. Pokhrel and T. A. M. Pugh and G. Sakurai and Y. Satoh and E. Schmid and T. Stacke and J. Steenbeek and J. Steinkamp and Q. Tang and H. Tian and D. P. Tittensor and J. Volkholz and X. Wang and L. Warszawski },
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Nature Communications},
keywords = {climate change impacts, EcoOcean, ensemble modelling, Fish-MIP, futures scenarios, global study},
pubstate = {published},
tppubtype = {article}
}
Bryndum-Buchholz, A.; Tittensor, D. P.; Blanchard, J. L.; Cheung, W. W. L.; Coll, M.; Galbraith, E. D.; Jennings, S.; Maury, O.; Lotze, H. K.
21st century climate change impacts on marine animal biomass and ecosystem structure across ocean basins Journal Article
In: Global Change Biology, vol. https://doi.org/10.1111/gcb.14512, 2019, (Type: Journal Article).
BibTeX | Tags: climate change impacts, EcoOcean, ensemble modelling, futures scenarios, global study
@article{bryndum-buchholz_21st_2019,
title = {21st century climate change impacts on marine animal biomass and ecosystem structure across ocean basins},
author = {A. Bryndum-Buchholz and D. P. Tittensor and J. L. Blanchard and W. W. L. Cheung and M. Coll and E. D. Galbraith and S. Jennings and O. Maury and H. K. Lotze},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Global Change Biology},
volume = {https://doi.org/10.1111/gcb.14512},
note = {Type: Journal Article},
keywords = {climate change impacts, EcoOcean, ensemble modelling, futures scenarios, global study},
pubstate = {published},
tppubtype = {article}
}
Schewe, J.; Gosling, S.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H.; Seneviratne, S.
State-of-the-art global models underestimate impacts from climate extremes Journal Article
In: Nature Communications, 2019.
BibTeX | Tags: climate change impacts, EcoOcean, ensemble modelling
@article{schewe_state---art_2019b,
title = {State-of-the-art global models underestimate impacts from climate extremes},
author = {J. Schewe and S. Gosling and C. Reyer and F. Zhao and P. Ciais and J. Elliott and L. Francois and V. Huber and H. Lotze and S. Seneviratne},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Nature Communications},
keywords = {climate change impacts, EcoOcean, ensemble modelling},
pubstate = {published},
tppubtype = {article}
}
2018
Journal Articles
Tittensor, D. P.; Eddy, T. D.; Lotze, H. K.; Galbraith, E. D.; Cheung, W. W. L.; Barange, M.; Blanchard, J. L.; Bopp, L.; Bryndum-Buchholz, A.; Büchner, M.; Bulman, C.; Carozza, D. A.; Christensen, V.; Coll, M.; Dunne, J. P.; Fernandes, J. A.; Fulton, E. A.; Hobday, A. J.; Huber, V.; Jennings, S.; Jones, M.; Lehodey, P.; Link, J. S.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Schewe, J.; Shin, Y-J; Silva, T.; Stock, C. A.; Steenbeek, J.; Underwood, P. J.; Volkholz, J.; Watson, J. R.; Walker, N. D.
A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0 Journal Article
In: Geosci. Model Dev., vol. 11, no. 4, pp. 1421–1442, 2018, ISSN: 1991-9603.
Links | BibTeX | Tags: EcoOcean
@article{tittensor_protocol_2018b,
title = {A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0},
author = {D. P. Tittensor and T. D. Eddy and H. K. Lotze and E. D. Galbraith and W. W. L. Cheung and M. Barange and J. L. Blanchard and L. Bopp and A. Bryndum-Buchholz and M. B\"{u}chner and C. Bulman and D. A. Carozza and V. Christensen and M. Coll and J. P. Dunne and J. A. Fernandes and E. A. Fulton and A. J. Hobday and V. Huber and S. Jennings and M. Jones and P. Lehodey and J. S. Link and S. Mackinson and O. Maury and S. Niiranen and R. Oliveros-Ramos and T. Roy and J. Schewe and Y-J Shin and T. Silva and C. A. Stock and J. Steenbeek and P. J. Underwood and J. Volkholz and J. R. Watson and N. D. Walker},
url = {https://www.geosci-model-dev.net/11/1421/2018/},
doi = {10.5194/gmd-11-1421-2018},
issn = {1991-9603},
year = {2018},
date = {2018-04-01},
urldate = {2018-04-01},
journal = {Geosci. Model Dev.},
volume = {11},
number = {4},
pages = {1421--1442},
keywords = {EcoOcean},
pubstate = {published},
tppubtype = {article}
}
Tittensor, D.; Lotze, H. K.; Tyler, P.; Galbraith, E. D.; Cheung, W. W. L.; Bryndum-Buchholz, A.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J. L.; Bopp, L.; Carozza, D. A.; Christensen, V.; Coll, M.; Jennings, S.; Jones, M.; Maury, O.; Silva, T. A. M.; Steenbeek, J.; Verley, P.; Schewe, J.; Volkholz, J.; Büchner, M.
ISIMIP2a Simulation Data from Fisheries & Marine Ecosystems (Fish-MIP; global) Sector. GFZ Data Services Journal Article
In: http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2956913, 2018, (Type: Journal Article).
@article{tittensor_isimip2a_2018b,
title = {ISIMIP2a Simulation Data from Fisheries \& Marine Ecosystems (Fish-MIP; global) Sector. GFZ Data Services},
author = {D. Tittensor and H. K. Lotze and P. Tyler and E. D. Galbraith and W. W. L. Cheung and A. Bryndum-Buchholz and M. Barange and N. Barrier and D. Bianchi and J. L. Blanchard and L. Bopp and D. A. Carozza and V. Christensen and M. Coll and S. Jennings and M. Jones and O. Maury and T. A. M. Silva and J. Steenbeek and P. Verley and J. Schewe and J. Volkholz and M. B\"{u}chner},
year = {2018},
date = {2018-01-01},
urldate = {2018-01-01},
journal = {http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2956913},
note = {Type: Journal Article},
keywords = {EcoOcean},
pubstate = {published},
tppubtype = {article}
}
2015
Journal Articles
Christensen, V.; Coll, M.; Buszowski, J.; Cheung, W. W. L.; Frölicher, T.; Steenbeek, J.; Stock, C. A.; Watson, R.; Walters, C. J.
The global ocean is an ecosystem: Simulating marine life and fisheries Journal Article
In: Global Ecology and Biogeography, vol. 24, no. 5, pp. 507–517, 2015.
Links | BibTeX | Tags: climate change impacts, EcoOcean, fisheries, global study
@article{christensen_global_2015b,
title = {The global ocean is an ecosystem: Simulating marine life and fisheries},
author = {V. Christensen and M. Coll and J. Buszowski and W. W. L. Cheung and T. Fr\"{o}licher and J. Steenbeek and C. A. Stock and R. Watson and C. J. Walters},
doi = {10.1111/geb.12281},
year = {2015},
date = {2015-01-01},
urldate = {2015-01-01},
journal = {Global Ecology and Biogeography},
volume = {24},
number = {5},
pages = {507--517},
keywords = {climate change impacts, EcoOcean, fisheries, global study},
pubstate = {published},
tppubtype = {article}
}
Contact
Ecopath International Initiative
Barcelona, Spain
PIC 958090341
info@ecopathinternational.org
Ecopath International Initiative is a not-for-profit research organization
Photo credits
© Jeroen Steenbeek

