Testing the EwE publications list:

Ma, Y., & You, X. (2025). Microplastics in freshwater ecosystems: A significant force of disrupting health and altering trophic transfer patterns by reduced assimilation efficiency of aquatic organisms. Aquaculture, 594, 741463. https://doi.org/10.1016/j.aquaculture.2024.741463 Cite
Bonaviri, C. (2024). New Insights into the Functioning of Mediterranean Rocky Reef ecosystem When Algal Forests Are Lost [PhD dissertation, Università degli Studi di Palermo]. https://iris.unipa.it/handle/10447/642534 Cite
Abobi, S. M., Oyiadzo, J. W., & Wolff, M. (2024). Assessing the trophic structure and functioning of a large tropical lagoon. Case study: Keta Lagoon, Ghana. West African Journal of Applied Ecology, 32(1), 54–76. https://www.ajol.info/index.php/wajae/article/view/272701 Cite
Borja, A., Uyarra, M. C., McQuatters-Gollop, A., & Elliott, M. (2024). Using the best scientific knowledge for the sustainable management of estuaries and coastal seas. Estuarine, Coastal and Shelf Science, 108755. https://doi.org/10.1016/j.ecss.2024.108755 Cite
Yao, Y., Zhang, S., Gao, S., Lu, J., & Fu, G. (2024). Release capacity of Portunus trituberculatus enhancement in coastal waters: A case study in the marine ranching area of Haizhou bay. Estuarine, Coastal and Shelf Science, 299, 108684. https://doi.org/10.1016/j.ecss.2024.108684 Cite
Solsona, N., Sturbois, A., Desroy, N., Ponsero, A., Schaal, G., & Le Pape, O. (2024). How trophic impasses structure coastal food webs? Insights from ECOPATH modelling. Estuarine, Coastal and Shelf Science, 299, 108691. https://doi.org/10.1016/j.ecss.2024.108691 Cite
Steenbeek, J., Ortega, P., Bernardello, R., Christensen, V., Coll, M., Exarchou, E., Fuster‐Alonso, A., Heneghan, R., Julià Melis, L., Pennino, M. G., Rivas, D., & Keenlyside, N. (2024). Making Ecosystem Modeling Operational–A Novel Distributed Execution Framework to Systematically Explore Ecological Responses to Divergent Climate Trajectories. Earth’s Future, 12(3), e2023EF004295. https://doi.org/10.1029/2023EF004295 Cite
Ruzicka, J., Chiaverano, L., Coll, M., Garrido, S., Tam, J., Murase, H., Robinson, K., Romagnoni, G., Shannon, L., Silva, A., Szalaj, D., & Watari, S. (2024). The role of small pelagic fish in diverse ecosystems: knowledge gleaned from food-web models. Marine Ecology Progress Series, SPF2. https://doi.org/10.3354/meps14513 Cite
Cruz-Ramírez, C. J., Chávez, V., Silva, R., Muñoz-Perez, J. J., & Rivera-Arriaga, E. (2024). Coastal Management: A Review of Key Elements for Vulnerability Assessment. Journal of Marine Science and Engineering, 12(3), 386. https://doi.org/10.3390/jmse12030386 Cite
Lesser, J. S., Bruel, R., Marcy-Quay, B., McReynolds, A. T., Stockwell, J. D., & Marsden, J. E. (2024). Whole-lake food web model indicates alewife invasion fueled lake trout restoration and altered patterns of trophic flow Lake Champlain. Journal of Great Lakes Research, 50(1), 102249. https://doi.org/10.1016/j.jglr.2023.102249 Cite
Guerra, A., Azevedo, A., Amorim, F., Soares, J., Neuparth, T., Santos, M. M., Martins, I., & Colaço, A. (2024). Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. Marine Pollution Bulletin, 199, 115974. https://doi.org/10.1016/j.marpolbul.2023.115974 Cite
Bentley, J. W., Chagaris, D., Coll, M., Heymans, J. J., Serpetti, N., Walters, C. J., & Christensen, V. (2024). Calibrating ecosystem models to support ecosystem-based management of marine systems. ICES Journal of Marine Science, 81(2), 260–275. https://doi.org/10.1093/icesjms/fsad213 Cite
McMullen, K., Vargas, F. H., Calle, P., Alavarado-Cadena, O., Pakhomov, E. A., & Alava, J. J. (2024). Modelling microplastic bioaccumulation and biomagnification potential in the Galápagos penguin ecosystem using Ecopath and Ecosim (EwE) with Ecotracer. PLOS ONE, 19(1), e0296788. https://doi.org/10.1371/journal.pone.0296788 Cite
Ottmann, D., Andersen, K. H., & van Denderen, P. D. (2024). Biomass and trait biogeography of cephalopods on the European and North American continental shelves. Global Ecology and Biogeography, 33(3), 439–449. https://doi.org/10.1111/geb.13803 Cite
Hernandez S., J. (2024). Deterministic and Stochastic Dynamics of Marine Food Webs [Master’s Thesis, Montclair State University]. https://digitalcommons.montclair.edu/etd/1382 Cite
Itoh, S., Takeshige, A., Kasai, A., Kimura, S., Hayakawa, J., & Ohtsuchi, N. (2024). 5.19 - Modeling Coastal Ecosystem Complexes. In D. Baird & M. Elliott (Eds.), Treatise on Estuarine and Coastal Science (Second Edition) (pp. 495–511). Academic Press. https://doi.org/10.1016/B978-0-323-90798-9.00057-3 Cite
Dimarchopoulou, D., Keramidas, I., Tsagarakis, K., Markantonatou, V., Halouani, G., & Tsikliras, A. C. (2024). Spatiotemporal fishing effort simulations and restriction scenarios in Thermaikos Gulf, Greece (northeastern Mediterranean Sea). Ocean & Coastal Management, 247, 106914. https://doi.org/10.1016/j.ocecoaman.2023.106914 Cite
Coll, M., Bellido, J. M., Pennino, M. G., Albo-Puigserver, M., Báez, J. C., Christensen, V., Corrales, X., Fernández-Corredor, E., Giménez, J., Julià, L., Lloret-Lloret, E., Macias, D., Ouled-Cheikh, J., Ramírez, F., Sbragaglia, V., & Steenbeek, J. (2024). Retrospective analysis of the pelagic ecosystem of the Western Mediterranean Sea: Drivers, changes and effects. Science of The Total Environment, 907, 167790. https://doi.org/10.1016/j.scitotenv.2023.167790 Cite
Thacharodi, A., Meenatchi, R., Hassan, S., Hussain, N., Bhat, M. A., Arockiaraj, J., Ngo, H. H., Le, Q. H., & Pugazhendhi, A. (2024). Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. Journal of Environmental Management, 349, 119433. https://doi.org/10.1016/j.jenvman.2023.119433 Cite
Barros, M. E., Arriagada, A., Arancibia, H., & Neira, S. (2024). Using a time-dynamic food web model to compare predation and fishing mortality in Pleuroncodes monodon (Galatheidae: Crustaceae) and other benthic and demersal resource species off central Chile. Ecological Modelling, 487, 110546. https://doi.org/10.1016/j.ecolmodel.2023.110546 Cite
Zhong, J., Medvecky, M., Tornos, J., & ... (2024). Erysipelothrix amsterdamensis sp. nov., associated with mortalities among endangered seabirds. … of Systematic and …. https://doi.org/10.1099/ijsem.0.006264 Cite
European Commission. Joint Research Centre. (2024). Scientific, Technical and Economic Committee for Fisheries (STECF): implementation of the technical measures regulation (STECF 23 15),. Publications Office. https://data.europa.eu/doi/10.2760/434306 Cite
Kammerer, M. J. (2024). Mathematical Modeling of the Nile Perch Fishery in Lake Victoria [Doctoral dissertation, Ruprecht-Karls-Universität]. https://doi.org/10.11588/heidok.00034604 Cite
ICES. (2024). Working Group on Multispecies Assessment Methods (WGSAM; outputs from 2023 meeting) (p. 11204107 Bytes, 218). ICES. https://ices-library.figshare.com/articles/report/Working_Group_on_Multispecies_Assessment_Methods_WGSAM_outputs_from_2023_meeting_/25020968 Cite
Xing, L., Tang, J., Tian, S., & Barrier, N. (2023). Simulating impacts of fishing toothfish on the pelagic community in the Cooperation Sea, Southern Ocean. Regional Studies in Marine Science, 68, 103227. https://doi.org/10.1016/j.rsma.2023.103227 Cite
Moutopoulos, D. K., Douligeri, A. S., Ziou, A., Kiriazis, N., Korakis, A., Petsis, N., & Katselis, G. N. (2023). A Modelling Approach for the Management of Invasive Species at a High-Altitude Artificial Lake. Limnological Review, 24(1), 1–16. https://doi.org/10.3390/limnolrev24010001 Cite
Ma, Y., & You, X. (2023). Modeling the effect of fish migration on the horizontal distribution of microplastics in freshwater and ecological risks in the food web: Influence of habitat. Science of The Total Environment, 904, 166265. https://doi.org/10.1016/j.scitotenv.2023.166265 Cite
Steins, N. A., Baker, M. R., Brooks, K., Mackinson, S., & Stephenson, R. L. (2023). Editorial: Co-creating knowledge with fishers: challenges and lessons for integrating fishers’ knowledge contributions into marine science in well-developed scientific advisory systems. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1338271 Cite
Salaün, J., Raoux, A., Pezy, J.-P., Dauvin, J.-C., & Pioch, S. (2023). Structural and functional changes in Artificial Reefs ecosystem stressed by trophic modelling approach: Case study in the Bay of Biscay. Regional Studies in Marine Science, 65, 103100. https://doi.org/10.1016/j.rsma.2023.103100 Cite
Kempf, A., Spence, M. A., Lehuta, S., Trijoulet, V., Bartolino, V., Villanueva, M. C., & Gaichas, S. K. (2023). Skill assessment of models relevant for the implementation of ecosystem-based fisheries management. Fisheries Research, 268, 106845. https://doi.org/10.1016/j.fishres.2023.106845 Cite
He, L., Xi, J., He, J., & Lin, Z. (2023). Energy flow analysis of in Litopenaeus vannamei-Tegillarca granosa polyculture ponds based on EwE model. Aquaculture Reports, 33, 101790. https://doi.org/10.1016/j.aqrep.2023.101790 Cite
Lin, A.-C., & Lin, H.-J. (2023). Long-term response of trophic structure and function to dam removal in a subtropical mountain stream. Ecological Indicators, 156, 111136. https://doi.org/10.1016/j.ecolind.2023.111136 Cite
Lobyrev, F. S. (2023). Dynamics of Zooplankton Consumption by the Three-Spined Stickleback Gasterosteus aculeatus (LINNAEUS, 1758) at Different Densities of the Predator. Russian Journal of Marine Biology, 49(6), 453–460. https://doi.org/10.1134/S1063074023060056 Cite
Yang, W., Zhang, Z., Wu, Y., Sun, T., Liu, H., & Zhao, Y. (2023). Ecosystem-based fishery management that accounts for trade-offs between fishing and enhancement stocking: A case study of Juehua Island in the Bohai Sea. Ecological Indicators, 156, 111081. https://doi.org/10.1016/j.ecolind.2023.111081 Cite
Chin, C.-P., Su, K.-Y., & Liu, K.-M. (2023). Assessing the Fishing Impact on the Marine Ecosystem of Guishan Island in the Northeastern Waters of Taiwan Using Ecopath and Ecosim. Journal of Marine Science and Engineering, 11(12), 2368. https://doi.org/10.3390/jmse11122368 Cite
Papantoniou, G., Zervoudaki, S., Assimakopoulou, G., Stoumboudi, M. Th., & Tsagarakis, K. (2023). Ecosystem-level responses to multiple stressors using a time-dynamic food-web model: The case of a re-oligotrophicated coastal embayment (Saronikos Gulf, E Mediterranean). Science of The Total Environment, 903, 165882. https://doi.org/10.1016/j.scitotenv.2023.165882 Cite
Jiang, C., Pauly, D., Wang, W., Du, J., Cheng, J., & Wang, M. (2023). A preliminary model of the mangrove ecosystem of Dongzhaigang Bay, Hainan, (China) based on Ecopath and Ecospace. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1277226 Cite
Elsworth, G. W., Lovenduski, N. S., Krumhardt, K. M., Marchitto, T. M., & Schlunegger, S. (2023). Anthropogenic climate change drives non-stationary phytoplankton internal variability. Biogeosciences, 20(21), 4477–4490. https://doi.org/10.5194/bg-20-4477-2023 Cite
Uusitalo, L., Puntila-Dodd, R., Artell, J., & Jernberg, S. (2023). Modelling framework to evaluate societal effects of ecosystem management. Science of The Total Environment, 898, 165508. https://doi.org/10.1016/j.scitotenv.2023.165508 Cite
Ricci, P., Serpetti, N., Cascione, D., Cipriano, G., D’Onghia, G., De Padova, D., Fanizza, C., Ingrosso, M., & Carlucci, R. (2023). Investigating fishery and climate change effects on the conservation status of odontocetes in the Northern Ionian Sea (Central Mediterranean Sea). Ecological Modelling, 485, 110500. https://doi.org/10.1016/j.ecolmodel.2023.110500 Cite
Bella, K., Sahadevan, P., Raghavan, R., Ramteke, K. K., & Sreekanth, G. B. (2023). Trophic functioning of a small, anthropogenically disturbed, tropical estuary. Marine Environmental Research, 192, 106189. https://doi.org/10.1016/j.marenvres.2023.106189 Cite
Sinnickson, D., Harris, H. E., & Chagaris, D. (2023). Assessing Energetic Pathways and Time Lags in Estuarine Food Webs. Ecosystems, 26(7), 1468–1488. https://doi.org/10.1007/s10021-023-00845-1 Cite
Ritambhara Swain, P., Kumar Parida, P., Panikkar, P., Kumar Das, B., Lianthuamluaia, Karnatak, G., Roy, A., Bhattacharya, S., Chakraborty, S., Chandra, P., Kumar Behera, B., Pandit, A., & Mondal, K. (2023). An Ecopath perspective on the maximum sustainable yield of a macrophyte infested wetland in Eastern India. Ecological Indicators, 155, 111002. https://doi.org/10.1016/j.ecolind.2023.111002 Cite
Yin, J., Xue, Y., Li, Y., Zhang, C., Xu, B., Liu, Y., Ren, Y., & Chen, Y. (2023). Evaluating the efficacy of fisheries management strategies in China for achieving multiple objectives under climate change. Ocean & Coastal Management, 245, 106870. https://doi.org/10.1016/j.ocecoaman.2023.106870 Cite
de Moura, R. S. T., Angelini, R., & Henry-Silva, G. G. (2023). Interactions between cage fish farms and fishing in Brazilian semiarid reservoirs: An ecosystemic approach. Aquaculture, 575, 739714. https://doi.org/10.1016/j.aquaculture.2023.739714 Cite
Tsikliras, A. C., Coro, G., Daskalov, G., Grémillet, D., Scotti, M., & Sylaios, G. (2023). Editorial: Ecocentric fisheries management in European seas: Data gaps, base models and initial assessments, volume I. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1295733 Cite
Allen, K. L., Ihde, T., Knoche, S., Townsend, H., & Lewis, K. A. (2023). Simulated climate change impacts on striped bass, blue crab and Eastern oyster in oyster sanctuary habitats of Chesapeake Bay. Estuarine, Coastal and Shelf Science, 292, 108465. https://doi.org/10.1016/j.ecss.2023.108465 Cite
Abucay, L. R., Sorongon-Yap, P., Kesner-Reyes, K., Capuli, E. C., Reyes, R. B., Daskalaki, E., Ferrà, C., Scarcella, G., Coro, G., Ordines, F., Sánchez-Zulueta, P., Dakalov, G., Klayn, S., Celie, L., Scotti, M., Grémillet, D., Lambert, C., Gal, G., Palomares, M. L. D., … Tsikliras, A. C. (2023). Scientific knowledge gaps on the biology of non-fish marine species across European Seas. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1198137 Cite
Brito, J., Soszynski, A., Pham, C. K., Giacomello, E., Menezes, G., Steenbeek, J., Chagaris, D., & Morato, T. (2023). Systematic evaluation of a spatially explicit ecosystem model to inform area-based management in the deep-sea. Ocean & Coastal Management, 244, 106807. https://doi.org/10.1016/j.ocecoaman.2023.106807 Cite
Inoue, H., Watari, S., Sawada, H., Lavergne, E., & Yamashita, Y. (2023). Impacts of regime shift on the fishery ecosystem in the coastal area of Kyoto prefecture, Sea of Japan, assessed using the Ecopath model. Fisheries Science, 89(5), 573–593. https://doi.org/10.1007/s12562-023-01691-9 Cite