What is EcoOcean?
EcoOcean is a spatially and temporally explicit mechanistic marine ecosystem modelling (MEM) complex of the global ocean, that unifies the consideration of spatial-temporal food-web dynamics ranging from primary producers to top predators with the impacts of environmental change and worldwide fisheries.
EcoOcean is built upon a heavily modified version of Ecospace, the spatial-temporal module of the Ecopath with Ecosim approach, where EwE calculations were expanded or replaced to represent spatial heterogenity in fishing and the behaviour, growth and movement of functional groups across the worlds’ oceans.
Characteristics
Quick facts
- 51 functional groups representing 3400+ species
- 14 fishing fleets representing 1,365 global fisheries
- run period 1950-2100 at monthly time steps
- spatial resolution 1dd (EcoOcean V1 and V2)
- ISIMIP3b input data volume: 60GB
- EcoOcean output data volume: 120GB
- EcoOcean run time: approximately 8 hours (PC)
Environmental change
Ecospace models for smaller areas can suffice with functional groups to generalize the representation of the different species within. EcoOcean, representing generic functional groups at the global scale, needs to consider the fact that the species compostion within functional groups vastly differs over time and space.
We have found a way to represent the spatial distribution and environmental preferences of 3400+ species within generic functional groups without having to explicitly model these species. This allows the modelling complex to account for the vast differences in termal preferences, depth affinities, and other major environmental conditions within a single functional group.
We call this system ‘cell-specific responses’. This system only considers environmental preferences for those species within a functional group that are likely to occur in those cells, where the likelihood of occurrence is a combined assessment of per-species cell suitability and evolving native distribution ranges.
Metabolic growth
EcoOcean incorporates temperature-adjusted metabolic rates to account for spatial differences in species growth and production under influence of long-term global temperatures.
Fisheries
EcoOcean is driven by global reanalysis of historical fishing effort per LME. Within each LME, historical total effort is distributed via the Ecospace fishing effort gravity model.
Modular architecture
EcoOcean is a testing bed for exploring the impact of ecological, climatological and socioeconomic hypotheses, and allows for systematic exploration and analysis of combintations of hypotheses to reproduce historical observations, and to forecast plausible states of future ecosystems. Such modularity is direly needed to allow the schientific community to learn from mechanistic models and their uncertainty, and to advance ecological understanding.
Development
EcoOcean is a product of ongoing collaborations between Ecopath International Initiative (Spain), the Institute of Marine Sciences (ICM-CSIC) (Spain), the Institute of the Oceans and Fisheries at the University of British Columbia (Canada), and Mountainsoft (Canada)
Development is funded through the projects TRIATLAS and ProOceans.
Availability
EcoOcean model results for the ISIMIP3b simulation rounds can be downloaded directly from isimip.org
The source code to EcoOcean is not freely available, but we are open to collaborations. To discuss options please contact us.
References
2024 |
Blanchard, Julia L.; Novaglio, Camilla; Maury, Olivier; Harrison, Cheryl S.; Petrik, Colleen M.; Fierro‐Arcos, Denisse; Ortega‐Cisneros, Kelly; Bryndum‐Buchholz, Andrea; Eddy, Tyler D.; Heneghan, Ryan; Roberts, Kelsey; Schewe, Jacob; Bianchi, Daniele; Guiet, Jerome; Denderen, P. Daniel Van; Palacios‐Abrantes, Juliano; Liu, Xiao; Stock, Charles A.; Rousseau, Yannick; Büchner, Matthias; Adekoya, Ezekiel O.; Bulman, Cathy; Cheung, William; Christensen, Villy; Coll, Marta; Capitani, Leonardo; Datta, Samik; Fulton, Elizabeth A.; Fuster, Alba; Garza, Victoria; Lengaigne, Matthieu; Lindmark, Max; Murphy, Kieran; Ouled‐Cheikh, Jazel; Prasad, Sowdamini S.; Oliveros‐Ramos, Ricardo; Reum, Jonathan C.; Rynne, Nina; Scherrer, Kim J. N.; Shin, Yunne‐Jai; Steenbeek, Jeroen; Woodworth‐Jefcoats, Phoebe; Wu, Yan‐Lun; Tittensor, Derek P. Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0 Journal Article In: Earth's Future, vol. 12, no. 12, pp. e2023EF004402, 2024, ISSN: 2328-4277, 2328-4277. @article{blanchard_detecting_2024, Abstract There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long‐term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio‐temporal scales relevant to the Inter‐Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world's fisheries occur. Furthermore, previous FishMIP climate impact projections have been limited by a lack of global standardized historical fishing data, low resolution of coastal processes, and uneven capabilities across the FishMIP community to dynamically model fisheries. These features are needed to evaluate how reliably the FishMIP ensemble captures past ecosystem states ‐ a crucial step for building confidence in future projections. To address these issues, we have developed FishMIP 2.0 comprising a two‐track framework for: (a) Model evaluation and attribution of past changes and (b) future climate and socioeconomic scenario projections. Key advances include improved historical climate forcing, which captures oceanographic features not previously resolved, and standardized global fishing forcing to test fishing effects systematically across models. FishMIP 2.0 is a crucial step toward a detection and attribution framework for changing marine ecosystems and toward enhanced policy relevance through increased confidence in future ensemble projections. Our results will help elucidate pathways toward achieving sustainable development goals. , Plain Language Summary Historically, the largest human impact on the ocean has been overfishing. In the future, it may become climate change. To understand and predict how human activities will affect marine ecosystems in the future, we need models that can be used to accurately detect and attribute the effects of drivers and their impact on past ecosystem trajectories. By doing this, we will build confidence in the ability of sets of these models (“ensembles”) to capture future change. FishMIP 2.0 provides a way to construct and test these ensembles and scenarios of both changing climate and socio‐economic conditions, to better assess how future fisheries could adapt over time. , Key Points Detecting, attributing, and projecting climate change risks on marine ecosystems and fisheries requires models with realistic dynamics FishMIP 2.0 incorporates fishing and climate impact trajectories to assess models and detect past ecosystem changes more accurately Our framework will help support model improvement, building confidence in future projections to underpin policy advice |
Steenbeek, Jeroen; Christensen, Villy; Fulton, Elizabeth A.; Infantes, Manuel Espino Ecosystem modelling for the ocean decade - facing the challenge PhD Thesis Universitat Politècnica de Catalunya, 2024. @phdthesis{steenbeek_ecosystem_2024, (English) The worlds’marine ecosystems are degrading under wide ranges of ever intensifying, diversifying and co-occurring human pressures. Ecosystem-based management (EBM) approaches have emerged as an alternative to ineffective single species and single sector management, veering away from siloed top-down approaches towards science-based, participatory processes that recognise connections across the system and seek to balance economic benefits with sustainably harvested and healthy ecosystems. To galvanize a global push towards EBM, the United Nations declaration of the Decade of Ocean Science for Sustainable Development (Ocean Decade) has given the oceanographic community a unique imperative to transform marine sciences into holistic, participatory, transparent and inclusive forms that involve and serve society. Transforming actual ocean sciences is easier said than done. Marine Ecosystem Models or MEMs are powerful mathematical tools for understanding past marine ecosystem and their dynamics under cumulative pressures, and have utility for predicting how ecosystems may continue to develop under scenarios of change. MEMs are widely used in science, and have significant utility to advice decision making and policy. However, despite decades of scientific progress, and despite an abundance of scientific recipes in the literature that can be deployed towards the aims of the Ocean Decade, the actual uptake of MEMs in management remains low. This dissertation explores why this is, and argues that the actual uptake of MEMs in policy and society is in part hampered by a factor largely ignored by the marine sciences: technical issues, institutionalized by the current competitive and achievement-driven academic funding model. The dissertation is based on four manuscripts, which explore the specific challenges raised by the Ocean Decade, and define and implement working prototypes to demonstrate that the gap between theory and practice can be bridged. The first challenge, enabling decision processes to use MEMs, is addressed in manuscript 1 where a MEM is integrated into a decision support tool for marine spatial planning, beyond the operational control of marine scientists. The second challenge, related to meaningfully communicating MEM output to outside audiences, is addressed in manuscript 2 where a MEM is interconnected with a 3D gaming engine to empathically visualize environmental change. The last challenge, making sure that MEM output is robust, is discussed in manuscripts 3 and 4. Of these, the first manuscript explores the reasons behind lack of systematic MEM assessments and puts forth a potential framework to overcome this 30-year old limitation. Manuscript 4 introduces a working and open-source prototype of that framework. Overall, these studies show that relatively simple software engineering can empower the use of MEMs towards the aims of the Ocean Decade, EBM, and beyond. This dissertation underscores that scientific and technical developments must go hand in hand, but also suggests that the status quo may not change unless long-term tool development and support become academic funding priorities. Last, although the prototypes developed in this dissertation should be taken as ideas that need further maturing in future research, the ideas throughout irrevocably demonstrate that the field of marine ecosystem modelling with relatively simple means can be made operational for the Ocean Decade. If anything, this dissertation is a rallying cry to the global marine ecosystem modelling community to rethink and reshape how we build, validate, calibrate and deploy our tools, with the aim to reach and involve the audiences that need marine science advice but do not have the means to generate it. (Català) Els ecosistemes marins del món s'estan degradant sota un ampli ventall de pressions humanes combinades que s'intensifiquen i es diversifiquen. Els enfocaments de gestió basada en ecosistemes (EBM) han sorgit com una alternativa a la gestió ineficaç, transitant des d´enfocaments sectorials de dalt a baix cap a processos participatius recolzats en la ciència que reconeixen connexions a nivell de tot el sistema i busquen equilibrar el benefici econòmic amb ecosistemes saludables i sostenibles. El Decenni de les Ciències Oceàniques per al Desenvolupament Sostenible de les Nacions Unides ha traslladat a la comunitat oceanogràfica l´imperatiu de transformar les ciències marines mitjançant enfocaments holístics, participatius, transparents i inclusius que involucrin i serveixin a la societat. Transformar les ciències oceàniques actuals és difícil. Els models d'ecosistemes marins (MEM) són eines matemàtiques poderoses per comprendre la dinàmica passada dels ecosistemes marins i el seu canvi sota pressions acumulatives, i capaces de predir com els ecosistemes poden continuar desenvolupant-se en escenaris canviants. Els MEM s'utilitzen àmpliament en ciència i tenen una gran utilitat per assessorar polítiques i prendre decisions. No obstant això, malgrat dècades de progrés i de l'abundància de recomanacions científiques que poden implementar-se per aconseguir els objectius del Decenni dels Oceans, l'adopció real dels MEM en la gestió continua sent baixa. Aquesta tesi explora les raons d'aquesta situació i sosté que l'adopció real dels MEM en les polítiques i la societat es veu en part obstaculitzada per un factor ignorat en gran part per les ciències marines: els problemes tècnics, institucionalitzats pel model actual de finançament acadèmic competitiu i orientat a resultats. La tesi es basa en quatre manuscrits, que exploren els desafiaments específics que planteja la dècada dels oceans i defineixen i implementen prototips funcionals que mostren que es pot salvar la bretxa entre la teoria i la pràctica. El primer desafiament, permetre que els processos de decisió utilitzin MEM, s'aborda al manuscrit 1, on un MEM s'integra en una eina de suport a la decisió per a la planificació de l'espai marí, sense necessitat de control operatiu dels científics marins. El segon desafiament, relacionat amb la comunicació significativa de la sortida del MEM a audiències externes, s'aborda al manuscrit 2, en el qual un MEM s’interconnecta amb un motor de joc 3D per mostrar visualment el canvi ambiental. El desafiament final, garantir que els resultats del MEM siguin sòlids, es discuteix en els manuscrits 3 i 4. D'aquests, el primer explora les raons de la manca d'avaluacions sistemàtiques dels MEM i proposa un marc potencial per superar aquesta limitació persistent, mentre que el segon presenta un prototip funcional de codi obert d'aquest marc. En conjunt, aquests estudis mostren que una enginyeria de programari relativament senzilla pot potenciar l'ús de MEM per als objectius de la dècada oceànica, l’EBM i més enllà. Aquesta tesi subratlla que els avanços científics i tècnics han d'anar de bracet, però també suggereix que el l'estancament actual no pot canviar tret que el desenvolupament i el suport a llarg termini a les eines sigui una prioritat de finançament. Encara que els prototips desenvolupats en aquesta tesi han de prendre´s com a idees que necessiten madurar-se més en futures investigacions, els treballs presentats mostren amb claredat que la modelització d'ecosistemes marins amb mitjans relativament senzills pot fer-se operativa per a la Dècada dels Oceans. Finalment, aquest treball és una crida urgent a la comunitat mundial de modelització d'ecosistemes marins per repensar i remodelar com construïm, validem, calibrem i despleguem les nostres eines, amb l'objectiu d'arribar i implicar a les audiències que necessitin aquest assessorament. (Español) Los ecosistemas marinos del mundo se están degradando por efecto de una amplia gama de presiones humanas combinadas que se intensifican y diversifican. Los enfoques de gestión basada en ecosistemas (EBM) han surgido como alternativa a la gestión ineficaz, transitando desde enfoques sectoriales basados en una lógica de arriba-abajo hacia procesos participativos apoyados en la ciencia que reconocen conexiones a nivel de todo el sistema y buscan equilibrar el beneficio económico con ecosistemas saludables y sostenibles. El Decenio de las Ciencias Oceánicas para el Desarrollo Sostenible de las Naciones Unidas ha trasladado a la comunidad oceanográfica el imperativo de transformar las ciencias marinas con enfoques holísticos, participativos, transparentes e inclusivos que involucren y sirvan a la sociedad. Transformar las ciencias oceánicas actuales es difícil. Los modelos de ecosistemas marinos (MEM) son herramientas matemáticas poderosas para comprender la dinámica pasada de los ecosistemas marinos y su cambio bajo presiones acumulativas, y capaces de predecir cómo los ecosistemas pueden continuar desarrollándose en escenarios cambiantes. Los MEM se utilizan ampliamente en ciencia y tienen una gran utilidad para asesorar políticas y tomar decisiones. Sin embargo, a pesar de décadas de progreso y de la abundancia de recomendaciones en la literatura científica que pueden implementarse para alcanzar los objetivos del Decenio de los Océanos, la adopción real de los MEM en la gestión sigue siendo baja. Esta tesis explora las razones de esta situación y sostiene que la adopción real de los MEM en las políticas y la sociedad se ve obstaculizada en parte por un factor ignorado en gran medida por las ciencias marinas: los problemas técnicos, institucionalizados por el modelo actual de financiación académica competitiva y orientada a resultados. La tesis se basa en cuatro manuscritos que exploran los desafíos específicos que plantea la Década de los Océanos y definen e implementan prototipos funcionales que muestran que se puede cerrar la brecha entre la teoría y la práctica. El primer desafío, permitir que los procesos de decisión utilicen MEM, se aborda en el manuscrito 1, en el que un MEM se integra en una herramienta de apoyo a la toma de decisiones para la planificación espacial marina, sin necesidad de control operativo de los científicos marinos. El segundo desafío, relacionado con la comunicación efectiva de los resultados de MEM a audiencias externas, se aborda en el manuscrito 2, en el que un MEM se interconecta con un motor de juego 3D para mostrar visualmente el cambio ambiental. El desafío final, garantizar que los resultados del MEM sean sólidos, se analiza en los manuscritos 3 y 4. De estos, el primero explora las razones de la falta de evaluaciones sistemáticas del MEM y propone un marco para superar esta limitación persistente, mientras que el segundo presenta un prototipo funcional de código abierto de este marco. En conjunto, estos estudios muestran que una ingeniería de software relativamente sencilla puede potenciar el uso de MEM hacia los objetivos de la Década de los Océanos, la EBM y más allá. Esta tesis subraya que los avances científicos y técnicos deben ir de la mano, pero también sugiere que el statu quo puede no cambiar a menos que el apoyo a largo plazo a las herramientas sea una prioridad de financiación. Por último, aunque los prototipos desarrollados en esta tesis deben tomarse como ideas que necesitan madurarse más, los trabajos presentados muestran inequívocamente que el campo de la modelización de ecosistemas marinos con medios relativamente simples puede hacerse operativo para el Decenio de los Océanos. Finalmente, este trabajo aspira a motivar a la comunidad mundial de modelización de ecosistemas marinos para repensar cómo construimos, validamos, calibramos e implementamos nuestras herramientas, con el objetivo de llegar e involucrar a las audiencias que necesiten ese asesoramiento. |
Boot, Amber Adore; Steenbeek, Jeroen Gerhard; Coll, Marta; Heydt, Anna S. Von Der; Dijkstra, Henk A. Global Marine Ecosystem Response to a Strong AMOC Weakening under Low and High Future Emission Scenarios Journal Article In: Authorea Preprints, 2024. @article{bootGlobalMarineEcosystem2024, |
Boot, Amber Adore; Steenbeek, Jeroen Gerhard; Coll, Marta; Heydt, Anna S. Von Der; Dijkstra, Henk A. Global marine ecosystem response to a strong AMOC weakening under low and high future emission scenarios Miscellaneous 2024. @misc{boot_global_2024, Marine ecosystems provide essential services to the Earth System and society. These ecosystems are threatened by anthropogenic activities and climate change. Climate change increases the risk of passing tipping points; for example, the Atlantic Meridional Overturning Circulation (AMOC) might tip under future global warming leading to additional changes in the climate system. Here, we look at the effect of an AMOC weakening on marine ecosystems by forcing the Community Earth System Model v2 (CESM2) with low (SSP1-2.6) and high (SSP5-8.5) emission scenarios from 2015 to 2100. An additional freshwater flux is added in the North Atlantic to induce extra weakening of the AMOC. In CESM2, the AMOC weakening has a large impact on phytoplankton biomass and temperature fields through various mechanisms that change the supply of nutrients to the surface ocean. We drive a marine ecosystem model, EcoOcean, with phytoplankton biomass and temperature fields from CESM2. In EcoOcean, we see negative impacts in Total System Biomass (TSB), which are larger for high trophic level organisms. The strongest net effect is seen in the high emission scenario, but the effect of the extra AMOC weakening on TSB is larger in the low emission scenario. On top of anthropogenic climate change, TSB decreases by -3.78% and -2.03% in SSP1-2.6 and SSP5-8.5, respectively due to the AMOC weakening. These results show that marine ecosystems will be under increased threat if the AMOC weakens which might put additional stresses on socio-economic systems that are dependent on marine biodiversity as a food and income source. |
Blanchard, Julia L.; Novaglio, Camilla; Maury, Olivier; Harrison, Cheryl Shannon; Petrik, Colleen M.; Arcos, L. Denisse Fierro; Ortega-Cisneros, Kelly; Bryndum-Buchholz, Andrea; Eddy, Tyler; Heneghan, Ryan Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0 Journal Article In: Authorea Preprints, 2024. @article{blanchardDetectingAttributingProjecting2024, |
Steenbeek, Jeroen; Ortega, Pablo; Bernardello, Raffaele; Christensen, Villy; Coll, Marta; Exarchou, Eleftheria; Fuster-Alonso, Alba; Heneghan, Ryan; Melis, Laura Julià; Pennino, Maria Grazia; Rivas, David; Keenlyside, Noel In: Earth's Future, vol. 12, no. 3, pp. e2023EF004295, 2024, ISSN: 2328-4277. @article{steenbeekMakingEcosystemModeling2024, Marine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyze the effects of alternative management efforts for marine ecosystems under potential scenarios of climate change. However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a time span widely used in the global climate modeling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low-tech and freely available technologies to enable the systematic execution and analysis of linked ESM/MEM prediction ensembles. We apply this framework on the seasonal-to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialized decadal ESM predictions affects a mechanistic and spatiotemporal explicit global trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM variability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modeling group with the fundamental capabilities to operationalize marine ecosystem modeling. |
Eddy, Tyler D.; Heneghan, Ryan F.; Bryndum-Buchholz, Andrea; Fulton, Beth; Harrison, Cheryl Shannon; Tittensor, Derek P.; Lotze, Heike K.; Ortega-Cisneros, Kelly; Novaglio, Camilla; Bianchi, Daniele Global and regional marine ecosystem model climate change projections reveal key uncertainties Journal Article In: 2024. @article{eddy_global_2024, |
Rynne, Nina; Novaglio, Camilla; Blanchard, Julia L.; Bianchi, Daniele; Christensen, Villy; Coll, Marta; Guiet, Jerome; Steenbeek, Jeroen Gerhard; Bryndum-Buchholz, Andrea; Eddy, Tyler A skill assessment framework for the fisheries and marine ecosystem model intercomparison project Journal Article In: Authorea Preprints, 2024, (Publisher: Authorea). @article{rynne_skill_2024, |
2021 |
Tittensor, D. P.; Novaglio, C.; Harrison, C. S.; Heneghan, R. F.; Barrier, N.; Bianchi, D.; Bopp, L.; Bryndum-Buchholz, A.; Britten, G. L.; Büchner, M.; Cheung, W. W. L.; Christensen, V.; Coll, M.; Dunne, J. P.; Eddy, T. D.; Everett, J. D.; Fernandes-Salvador, J. A.; Fulton, E. A.; Galbraith, E. D.; Gascuel, D.; Guiet, J.; John, J. G.; Link, J. S.; Lotze, H. K.; Maury, O.; Ortega-Cisneros, K.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Rault, J.; Richardson, A. J.; Shannon, L. J.; Shin, Y-J; Steenbeek, J.; Stock, C. A.; Blanchard, J. L. Next-generation ensemble projections reveal higher climate risks for marine ecosystems Journal Article In: Nature Climate Change, pp. 1–9, 2021, ISSN: 1758-6798, (Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate-change ecology;Ecological modelling;Marine biology Subject_term_id: climate-change-ecology;ecological-modelling;marine-biology). @article{tittensor_next-generation_2021, |
Heneghan, R. F.; Galbraith, E. D.; Blanchard, J. L.; Harrison, C.; Barrier, N.; Bulman, C.; Cheung, W. W. L.; Coll, M.; Eddy, T. D.; Erauskin-Extramiana, M.; Everett, J. D.; Fernandes-Salvador, J. A.; Gascuel, D.; Guiet, J.; Maury, O.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Richardson, A. J.; Steenbeek, J.; Tai, T. C.; Volkholz, J.; Woodworth-Jefcoats, P. A.; Tittensor, D. P. Disentangling diverse responses to climate change among global marine ecosystem models Journal Article In: Progress in Oceanography, pp. 102659, 2021, ISSN: 0079-6611. @article{heneghan_disentangling_2021, |
2020 |
Coll, M.; Steenbeek, J.; Pennino, M. Grazia; Buszowski, J.; Kaschner, K.; Lotze, H. K.; Rousseau, Y.; Tittensor, D. P.; Walters, C. J.; Watson, R.; Christensen, V. Advancing global ecological modelling capabilities to simulate future trajectories of change in marine ecosystems Journal Article In: Frontiers in Marine Science, vol. 7, 2020, ISSN: 2296-7745, (Publisher: Frontiers). @article{coll_advancing_2020, Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean’s biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modelling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modelling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change. |
Waldron, A.; Adams, V.; Allan, J.; Arnell, A.; Asner, G.; Atkinson, S.; Baccini, A.; Baillie, J. E. M.; Balmford, A.; Beau, J. A.; Brander, L.; Brondizio, E.; Bruner, A.; Burgess, N. D.; Burkart, K.; Butchart, S. H. M.; Button, R.; Carrasco, R.; Cheung, W. W. L.; Christensen, V.; Clements, A.; Coll, M.; di Marco, M.; Deguignet, M.; Dinerstein, E.; Ellis, E.; Eppink, F.; Ervin, J.; Escobedo, A.; Fa, J.; Fernandes-Llamazares, A.; Fernando, S.; Fujimori, S.; Fulton, E. A.; Garnett, S.; Gerber, J.; Gill, D.; Gopalakrishna, T.; Hahn, N.; Halpern, B.; Hasegawa, T.; Havlik, P.; Heikinheimo, V.; Heneghan, R. F.; Henry, E.; Humpenoder, F.; Jonas, H.; Jones, K. R.; Joppa, J.; Joshi, A. R.; Jung, M.; Kingston, N.; Klein, C. J.; Krisztin, T.; Lam, V.; Leclere, D.; Lindsey, P.; Locke, H.; Lovejoy, T.; Madgwick, P.; Malhi, Y.; Malmer, P.; Maron, M.; Mayorga, J.; van Meijl, H.; Miller, D.; Molnar, Z.; Mueller, N.; Mukherjee, N.; Naidoo, R.; Nakamura, K.; Nepal, P.; Noss, R.; O’Leary, B.; Olson, D.; Abrantes, J. Palcios; Paxton, M.; Popp, A.; Possingham, H.; Prestemon, J.; Reside, A.; Robinson, C.; Robinson, J.; Sala, E.; Scherrer, K.; Spalding, M. D.; Spenceley, A.; Steenbeek, J.; Stehfest, E.; Strassborg, B.; Sumaila, R.; Swinnerton, K.; Sze, J.; Tittensor, D. P.; Toivonen, T.; Toledo, A.; Torres, P. Negret; van Zeist, W-J; Vause, J.; Venter, O.; Vilela, T.; Visconti, P.; Vynne, C.; Watson, R.; Watson, J.; Wikramanayake, E.; William, B.; Wintle, B. A.; Woodley, S.; Wu, W.; Zander, K.; Zhang, Y.; Zhang, Y. Campaign for nature 2020. @techreport{waldron_2020_thirtypct, |
2019 |
Lotze, H. K.; Tittensor, D. P.; Bryndum-Buchholz, A.; Eddy, T. D.; Cheung, W. W. L.; Galbraith, E. D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.; Bopp, L.; Büchner, M.; Bulman, C.; Carozza, D.; Christensen, V.; Coll, M.; Dunne, J. P.; Fulton, E. A.; Jennings, S.; Jones, M.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Fernandes, J. A.; Schewe, J.; Shin, Y-J; Silva, T.; Steenbeek, J.; Stock, C. A.; Verley, P.; Volkholz, J.; Walker, N. D.; Worm, B. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change Journal Article In: Proceedings of the National Academy of Sciences, pp. 201900194, 2019, ISSN: 0027-8424, 1091-6490. @article{lotze_global_2019, While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends. |
Schewe, J.; Gosling, S. N.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H. K.; Seneviratne, S.; van Vliet, M. T. H.; Vautard, R.; Wada, Y.; Breuer, L.; Büchner, M.; Carozza, D. A.; Chang, J.; Coll, M.; Deryng, D.; de Wit, A.; Eddy, T. D.; Folberth, C.; Frieler, K.; Friend, A. D.; Gerten, D.; Gudmundsson, L.; Hanasaki, N.; Ito, A.; Khabarov, N.; Kim, H.; Lawrence, P.; Morfopoulos, C.; Müller, C.; Schmied, H. Müller; Orth, R.; Ostberg, S.; Pokhrel, Y.; Pugh, T. A. M.; Sakurai, G.; Satoh, Y.; Schmid, E.; Stacke, T.; Steenbeek, J.; Steinkamp, J.; Tang, Q.; Tian, H.; Tittensor, D. P.; Volkholz, J.; Wang, X.; Warszawski, L. State-of-the-art global models underestimate impacts from climate extremes Journal Article In: Nature Communications, 2019. @article{schewe_state---art_2019, |
Bryndum-Buchholz, A.; Tittensor, D. P.; Blanchard, J. L.; Cheung, W. W. L.; Coll, M.; Galbraith, E. D.; Jennings, S.; Maury, O.; Lotze, H. K. 21st century climate change impacts on marine animal biomass and ecosystem structure across ocean basins Journal Article In: Global Change Biology, vol. https://doi.org/10.1111/gcb.14512, 2019, (Type: Journal Article). @article{bryndum-buchholz_21st_2019, |
Schewe, J.; Gosling, S.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H.; Seneviratne, S. State-of-the-art global models underestimate impacts from climate extremes Journal Article In: Nature Communications, 2019. @article{schewe_state---art_2019b, |
2018 |
Tittensor, D. P.; Eddy, T. D.; Lotze, H. K.; Galbraith, E. D.; Cheung, W. W. L.; Barange, M.; Blanchard, J. L.; Bopp, L.; Bryndum-Buchholz, A.; Büchner, M.; Bulman, C.; Carozza, D. A.; Christensen, V.; Coll, M.; Dunne, J. P.; Fernandes, J. A.; Fulton, E. A.; Hobday, A. J.; Huber, V.; Jennings, S.; Jones, M.; Lehodey, P.; Link, J. S.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Schewe, J.; Shin, Y-J; Silva, T.; Stock, C. A.; Steenbeek, J.; Underwood, P. J.; Volkholz, J.; Watson, J. R.; Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0 Journal Article In: Geosci. Model Dev., vol. 11, no. 4, pp. 1421–1442, 2018, ISSN: 1991-9603. @article{tittensor_protocol_2018b, |
Tittensor, D.; Lotze, H. K.; Tyler, P.; Galbraith, E. D.; Cheung, W. W. L.; Bryndum-Buchholz, A.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J. L.; Bopp, L.; Carozza, D. A.; Christensen, V.; Coll, M.; Jennings, S.; Jones, M.; Maury, O.; Silva, T. A. M.; Steenbeek, J.; Verley, P.; Schewe, J.; Volkholz, J.; Büchner, M. ISIMIP2a Simulation Data from Fisheries & Marine Ecosystems (Fish-MIP; global) Sector. GFZ Data Services Journal Article In: http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2956913, 2018, (Type: Journal Article). @article{tittensor_isimip2a_2018b, |
2015 |
Christensen, V.; Coll, M.; Buszowski, J.; Cheung, W. W. L.; Frölicher, T.; Steenbeek, J.; Stock, C. A.; Watson, R.; Walters, C. J. The global ocean is an ecosystem: Simulating marine life and fisheries Journal Article In: Global Ecology and Biogeography, vol. 24, no. 5, pp. 507–517, 2015. @article{christensen_global_2015b, |