2024 |
Boot, Amber Adore; Steenbeek, Jeroen Gerhard; Coll, Marta; Heydt, Anna S. Von Der; Dijkstra, Henk A. Global Marine Ecosystem Response to a Strong AMOC Weakening under Low and High Future Emission Scenarios Journal Article In: Authorea Preprints, 2024. @article{bootGlobalMarineEcosystem2024,
title = {Global Marine Ecosystem Response to a Strong AMOC Weakening under Low and High Future Emission Scenarios},
author = {Amber Adore Boot and Jeroen Gerhard Steenbeek and Marta Coll and Anna S. Von Der Heydt and Henk A. Dijkstra},
doi = {10.22541/essoar.171319366.64840276/v1},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-01},
journal = {Authorea Preprints},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Blanchard, Julia L.; Novaglio, Camilla; Maury, Olivier; Harrison, Cheryl Shannon; Petrik, Colleen M.; Arcos, L. Denisse Fierro; Ortega-Cisneros, Kelly; Bryndum-Buchholz, Andrea; Eddy, Tyler; Heneghan, Ryan Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0 Journal Article In: Authorea Preprints, 2024. @article{blanchardDetectingAttributingProjecting2024,
title = {Detecting, Attributing, and Projecting Global Marine Ecosystem and Fisheries Change: FishMIP 2.0},
author = {Julia L. Blanchard and Camilla Novaglio and Olivier Maury and Cheryl Shannon Harrison and Colleen M. Petrik and L. Denisse Fierro Arcos and Kelly Ortega-Cisneros and Andrea Bryndum-Buchholz and Tyler Eddy and Ryan Heneghan},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Authorea Preprints},
publisher = {Authorea},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Steenbeek, Jeroen; Ortega, Pablo; Bernardello, Raffaele; Christensen, Villy; Coll, Marta; Exarchou, Eleftheria; Fuster-Alonso, Alba; Heneghan, Ryan; Melis, Laura Julià; Pennino, Maria Grazia; Rivas, David; Keenlyside, Noel Making Ecosystem Modeling Operational – a Novel Distributed Execution Framework to Systematically Explore Ecological Responses to Divergent Climate Trajectories Journal Article In: Earth's Future, vol. 12, no. 3, pp. e2023EF004295, 2024, ISSN: 2328-4277. @article{steenbeekMakingEcosystemModeling2024,
title = {Making Ecosystem Modeling Operational \textendash a Novel Distributed Execution Framework to Systematically Explore Ecological Responses to Divergent Climate Trajectories},
author = {Jeroen Steenbeek and Pablo Ortega and Raffaele Bernardello and Villy Christensen and Marta Coll and Eleftheria Exarchou and Alba Fuster-Alonso and Ryan Heneghan and Laura Juli\`{a} Melis and Maria Grazia Pennino and David Rivas and Noel Keenlyside},
doi = {10.1029/2023EF004295},
issn = {2328-4277},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Earth's Future},
volume = {12},
number = {3},
pages = {e2023EF004295},
abstract = {Marine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyze the effects of alternative management efforts for marine ecosystems under potential scenarios of climate change. However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a time span widely used in the global climate modeling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low-tech and freely available technologies to enable the systematic execution and analysis of linked ESM/MEM prediction ensembles. We apply this framework on the seasonal-to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialized decadal ESM predictions affects a mechanistic and spatiotemporal explicit global trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM variability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modeling group with the fundamental capabilities to operationalize marine ecosystem modeling.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Marine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyze the effects of alternative management efforts for marine ecosystems under potential scenarios of climate change. However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a time span widely used in the global climate modeling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low-tech and freely available technologies to enable the systematic execution and analysis of linked ESM/MEM prediction ensembles. We apply this framework on the seasonal-to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialized decadal ESM predictions affects a mechanistic and spatiotemporal explicit global trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM variability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modeling group with the fundamental capabilities to operationalize marine ecosystem modeling. |
2021 |
Steenbeek, J.; Buszowski, J.; Chagaris, D.; Christensen, V.; Coll, M.; Fulton, E. A.; Katsanevakis, S.; Lewis, K. A.; Mazaris, A. D.; Macias, D.; de Mutsert, K.; Oldford, G.; Pennino, M. Grazia; Piroddi, C.; Romagnoni, G.; Serpetti, N.; Shin, Y-J; Spence, M. A.; Stelzenmüller, V. Making spatial-temporal marine ecosystem modelling better – A perspective Journal Article In: Environmental Modelling & Software, vol. 145, pp. 105209, 2021, ISSN: 1364-8152. @article{steenbeek_making_2021,
title = {Making spatial-temporal marine ecosystem modelling better \textendash A perspective},
author = {J. Steenbeek and J. Buszowski and D. Chagaris and V. Christensen and M. Coll and E. A. Fulton and S. Katsanevakis and K. A. Lewis and A. D. Mazaris and D. Macias and K. de Mutsert and G. Oldford and M. Grazia Pennino and C. Piroddi and G. Romagnoni and N. Serpetti and Y-J Shin and M. A. Spence and V. Stelzenm\"{u}ller},
url = {https://www.sciencedirect.com/science/article/pii/S1364815221002516},
doi = {10.1016/j.envsoft.2021.105209},
issn = {1364-8152},
year = {2021},
date = {2021-11-01},
urldate = {2021-11-01},
journal = {Environmental Modelling \& Software},
volume = {145},
pages = {105209},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Tittensor, D. P.; Novaglio, C.; Harrison, C. S.; Heneghan, R. F.; Barrier, N.; Bianchi, D.; Bopp, L.; Bryndum-Buchholz, A.; Britten, G. L.; Büchner, M.; Cheung, W. W. L.; Christensen, V.; Coll, M.; Dunne, J. P.; Eddy, T. D.; Everett, J. D.; Fernandes-Salvador, J. A.; Fulton, E. A.; Galbraith, E. D.; Gascuel, D.; Guiet, J.; John, J. G.; Link, J. S.; Lotze, H. K.; Maury, O.; Ortega-Cisneros, K.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Rault, J.; Richardson, A. J.; Shannon, L. J.; Shin, Y-J; Steenbeek, J.; Stock, C. A.; Blanchard, J. L. Next-generation ensemble projections reveal higher climate risks for marine ecosystems Journal Article In: Nature Climate Change, pp. 1–9, 2021, ISSN: 1758-6798, (Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate-change ecology;Ecological modelling;Marine biology Subject_term_id: climate-change-ecology;ecological-modelling;marine-biology). @article{tittensor_next-generation_2021,
title = {Next-generation ensemble projections reveal higher climate risks for marine ecosystems},
author = {D. P. Tittensor and C. Novaglio and C. S. Harrison and R. F. Heneghan and N. Barrier and D. Bianchi and L. Bopp and A. Bryndum-Buchholz and G. L. Britten and M. B\"{u}chner and W. W. L. Cheung and V. Christensen and M. Coll and J. P. Dunne and T. D. Eddy and J. D. Everett and J. A. Fernandes-Salvador and E. A. Fulton and E. D. Galbraith and D. Gascuel and J. Guiet and J. G. John and J. S. Link and H. K. Lotze and O. Maury and K. Ortega-Cisneros and J. Palacios-Abrantes and C. Petrik and H. Pontavice and J. Rault and A. J. Richardson and L. J. Shannon and Y-J Shin and J. Steenbeek and C. A. Stock and J. L. Blanchard},
url = {https://www.nature.com/articles/s41558-021-01173-9},
doi = {10.1038/s41558-021-01173-9},
issn = {1758-6798},
year = {2021},
date = {2021-10-01},
urldate = {2021-10-01},
journal = {Nature Climate Change},
pages = {1--9},
note = {Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Climate-change ecology;Ecological modelling;Marine biology Subject_term_id: climate-change-ecology;ecological-modelling;marine-biology},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Heneghan, R. F.; Galbraith, E. D.; Blanchard, J. L.; Harrison, C.; Barrier, N.; Bulman, C.; Cheung, W. W. L.; Coll, M.; Eddy, T. D.; Erauskin-Extramiana, M.; Everett, J. D.; Fernandes-Salvador, J. A.; Gascuel, D.; Guiet, J.; Maury, O.; Palacios-Abrantes, J.; Petrik, C.; Pontavice, H.; Richardson, A. J.; Steenbeek, J.; Tai, T. C.; Volkholz, J.; Woodworth-Jefcoats, P. A.; Tittensor, D. P. Disentangling diverse responses to climate change among global marine ecosystem models Journal Article In: Progress in Oceanography, pp. 102659, 2021, ISSN: 0079-6611. @article{heneghan_disentangling_2021,
title = {Disentangling diverse responses to climate change among global marine ecosystem models},
author = {R. F. Heneghan and E. D. Galbraith and J. L. Blanchard and C. Harrison and N. Barrier and C. Bulman and W. W. L. Cheung and M. Coll and T. D. Eddy and M. Erauskin-Extramiana and J. D. Everett and J. A. Fernandes-Salvador and D. Gascuel and J. Guiet and O. Maury and J. Palacios-Abrantes and C. Petrik and H. Pontavice and A. J. Richardson and J. Steenbeek and T. C. Tai and J. Volkholz and P. A. Woodworth-Jefcoats and D. P. Tittensor},
url = {https://www.sciencedirect.com/science/article/pii/S0079661121001440},
doi = {10.1016/j.pocean.2021.102659},
issn = {0079-6611},
year = {2021},
date = {2021-08-01},
urldate = {2021-08-01},
journal = {Progress in Oceanography},
pages = {102659},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
2020 |
Coll, M.; Steenbeek, J.; Pennino, M. Grazia; Buszowski, J.; Kaschner, K.; Lotze, H. K.; Rousseau, Y.; Tittensor, D. P.; Walters, C. J.; Watson, R.; Christensen, V. Advancing global ecological modelling capabilities to simulate future trajectories of change in marine ecosystems Journal Article In: Frontiers in Marine Science, vol. 7, 2020, ISSN: 2296-7745, (Publisher: Frontiers). @article{coll_advancing_2020,
title = {Advancing global ecological modelling capabilities to simulate future trajectories of change in marine ecosystems},
author = { M. Coll and J. Steenbeek and M. Grazia Pennino and J. Buszowski and K. Kaschner and H. K. Lotze and Y. Rousseau and D. P. Tittensor and C. J. Walters and R. Watson and V. Christensen},
url = {https://www.frontiersin.org/articles/10.3389/fmars.2020.567877/abstract},
doi = {10.3389/fmars.2020.567877},
issn = {2296-7745},
year = {2020},
date = {2020-08-13},
urldate = {2020-08-13},
journal = {Frontiers in Marine Science},
volume = {7},
abstract = {Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean’s biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modelling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modelling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.},
note = {Publisher: Frontiers},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean’s biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modelling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modelling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change. |
Waldron, A.; Adams, V.; Allan, J.; Arnell, A.; Asner, G.; Atkinson, S.; Baccini, A.; Baillie, J. E. M.; Balmford, A.; Beau, J. A.; Brander, L.; Brondizio, E.; Bruner, A.; Burgess, N. D.; Burkart, K.; Butchart, S. H. M.; Button, R.; Carrasco, R.; Cheung, W. W. L.; Christensen, V.; Clements, A.; Coll, M.; di Marco, M.; Deguignet, M.; Dinerstein, E.; Ellis, E.; Eppink, F.; Ervin, J.; Escobedo, A.; Fa, J.; Fernandes-Llamazares, A.; Fernando, S.; Fujimori, S.; Fulton, E. A.; Garnett, S.; Gerber, J.; Gill, D.; Gopalakrishna, T.; Hahn, N.; Halpern, B.; Hasegawa, T.; Havlik, P.; Heikinheimo, V.; Heneghan, R. F.; Henry, E.; Humpenoder, F.; Jonas, H.; Jones, K. R.; Joppa, J.; Joshi, A. R.; Jung, M.; Kingston, N.; Klein, C. J.; Krisztin, T.; Lam, V.; Leclere, D.; Lindsey, P.; Locke, H.; Lovejoy, T.; Madgwick, P.; Malhi, Y.; Malmer, P.; Maron, M.; Mayorga, J.; van Meijl, H.; Miller, D.; Molnar, Z.; Mueller, N.; Mukherjee, N.; Naidoo, R.; Nakamura, K.; Nepal, P.; Noss, R.; O’Leary, B.; Olson, D.; Abrantes, J. Palcios; Paxton, M.; Popp, A.; Possingham, H.; Prestemon, J.; Reside, A.; Robinson, C.; Robinson, J.; Sala, E.; Scherrer, K.; Spalding, M. D.; Spenceley, A.; Steenbeek, J.; Stehfest, E.; Strassborg, B.; Sumaila, R.; Swinnerton, K.; Sze, J.; Tittensor, D. P.; Toivonen, T.; Toledo, A.; Torres, P. Negret; van Zeist, W-J; Vause, J.; Venter, O.; Vilela, T.; Visconti, P.; Vynne, C.; Watson, R.; Watson, J.; Wikramanayake, E.; William, B.; Wintle, B. A.; Woodley, S.; Wu, W.; Zander, K.; Zhang, Y.; Zhang, Y. Protecting 30% of the planet for nature: costs, benefits and economic implications. Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework Technical Report Campaign for nature 2020. @techreport{waldron_2020_thirtypct,
title = {Protecting 30% of the planet for nature: costs, benefits and economic implications. Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework},
author = {A. Waldron and V. Adams and J. Allan and A. Arnell and G. Asner and S. Atkinson and A. Baccini and J. E. M. Baillie and A. Balmford and J. A. Beau and L. Brander and E. Brondizio and A. Bruner and N. D. Burgess and K. Burkart and S. H. M. Butchart and R. Button and R. Carrasco and W. W. L. Cheung and V. Christensen and A. Clements and M. Coll and M. di Marco and M. Deguignet and E. Dinerstein and E. Ellis and F. Eppink and J. Ervin and A. Escobedo and J. Fa and A. Fernandes-Llamazares and S. Fernando and S. Fujimori and E. A. Fulton and S. Garnett and J. Gerber and D. Gill and T. Gopalakrishna and N. Hahn and B. Halpern and T. Hasegawa and P. Havlik and V. Heikinheimo and R. F. Heneghan and E. Henry and F. Humpenoder and H. Jonas and K. R. Jones and J. Joppa and A. R. Joshi and M. Jung and N. Kingston and C. J. Klein and T. Krisztin and V. Lam and D. Leclere and P. Lindsey and H. Locke and T. Lovejoy and P. Madgwick and Y. Malhi and P. Malmer and M. Maron and J. Mayorga and H. van Meijl and D. Miller and Z. Molnar and N. Mueller and N. Mukherjee and R. Naidoo and K. Nakamura and P. Nepal and R. Noss and B. O’Leary and D. Olson and J. Palcios Abrantes and M. Paxton and A. Popp and H. Possingham and J. Prestemon and A. Reside and C. Robinson and J. Robinson and E. Sala and K. Scherrer and M. D. Spalding and A. Spenceley and J. Steenbeek and E. Stehfest and B. Strassborg and R. Sumaila and K. Swinnerton and J. Sze and D. P. Tittensor and T. Toivonen and A. Toledo and P. Negret Torres and W-J van Zeist and J. Vause and O. Venter and T. Vilela and P. Visconti and C. Vynne and R. Watson and J. Watson and E. Wikramanayake and B. William and B. A. Wintle and S. Woodley and W. Wu and K. Zander and Y. Zhang and Y. Zhang},
url = {https://www.campaignfornature.org/protecting-30-of-the-planet-for-nature-economic-analysis},
year = {2020},
date = {2020-07-17},
urldate = {2020-07-17},
institution = {Campaign for nature},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
|
2019 |
Lotze, H. K.; Tittensor, D. P.; Bryndum-Buchholz, A.; Eddy, T. D.; Cheung, W. W. L.; Galbraith, E. D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.; Bopp, L.; Büchner, M.; Bulman, C.; Carozza, D.; Christensen, V.; Coll, M.; Dunne, J. P.; Fulton, E. A.; Jennings, S.; Jones, M.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Fernandes, J. A.; Schewe, J.; Shin, Y-J; Silva, T.; Steenbeek, J.; Stock, C. A.; Verley, P.; Volkholz, J.; Walker, N. D.; Worm, B. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change Journal Article In: Proceedings of the National Academy of Sciences, pp. 201900194, 2019, ISSN: 0027-8424, 1091-6490. @article{lotze_global_2019,
title = {Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change},
author = {H. K. Lotze and D. P. Tittensor and A. Bryndum-Buchholz and T. D. Eddy and W. W. L. Cheung and E. D. Galbraith and M. Barange and N. Barrier and D. Bianchi and J. Blanchard and L. Bopp and M. B\"{u}chner and C. Bulman and D. Carozza and V. Christensen and M. Coll and J. P. Dunne and E. A. Fulton and S. Jennings and M. Jones and S. Mackinson and O. Maury and S. Niiranen and R. Oliveros-Ramos and T. Roy and J. A. Fernandes and J. Schewe and Y-J Shin and T. Silva and J. Steenbeek and C. A. Stock and P. Verley and J. Volkholz and N. D. Walker and B. Worm},
url = {https://www.pnas.org/content/early/2019/06/10/1900194116},
doi = {10.1073/pnas.1900194116},
issn = {0027-8424, 1091-6490},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Proceedings of the National Academy of Sciences},
pages = {201900194},
abstract = {While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends. |
Schewe, J.; Gosling, S. N.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H. K.; Seneviratne, S.; van Vliet, M. T. H.; Vautard, R.; Wada, Y.; Breuer, L.; Büchner, M.; Carozza, D. A.; Chang, J.; Coll, M.; Deryng, D.; de Wit, A.; Eddy, T. D.; Folberth, C.; Frieler, K.; Friend, A. D.; Gerten, D.; Gudmundsson, L.; Hanasaki, N.; Ito, A.; Khabarov, N.; Kim, H.; Lawrence, P.; Morfopoulos, C.; Müller, C.; Schmied, H. Müller; Orth, R.; Ostberg, S.; Pokhrel, Y.; Pugh, T. A. M.; Sakurai, G.; Satoh, Y.; Schmid, E.; Stacke, T.; Steenbeek, J.; Steinkamp, J.; Tang, Q.; Tian, H.; Tittensor, D. P.; Volkholz, J.; Wang, X.; Warszawski, L. State-of-the-art global models underestimate impacts from climate extremes Journal Article In: Nature Communications, 2019. @article{schewe_state---art_2019,
title = {State-of-the-art global models underestimate impacts from climate extremes},
author = {J. Schewe and S. N. Gosling and C. Reyer and F. Zhao and P. Ciais and J. Elliott and L. Francois and V. Huber and H. K. Lotze and S. Seneviratne and M. T. H. van Vliet and R. Vautard and Y. Wada and L. Breuer and M. B\"{u}chner and D. A. Carozza and J. Chang and M. Coll and D. Deryng and A. de Wit and T. D. Eddy and C. Folberth and K. Frieler and A. D. Friend and D. Gerten and L. Gudmundsson and N. Hanasaki and A. Ito and N. Khabarov and H. Kim and P. Lawrence and C. Morfopoulos and C. M\"{u}ller and H. M\"{u}ller Schmied and R. Orth and S. Ostberg and Y. Pokhrel and T. A. M. Pugh and G. Sakurai and Y. Satoh and E. Schmid and T. Stacke and J. Steenbeek and J. Steinkamp and Q. Tang and H. Tian and D. P. Tittensor and J. Volkholz and X. Wang and L. Warszawski },
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Nature Communications},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Bryndum-Buchholz, A.; Tittensor, D. P.; Blanchard, J. L.; Cheung, W. W. L.; Coll, M.; Galbraith, E. D.; Jennings, S.; Maury, O.; Lotze, H. K. 21st century climate change impacts on marine animal biomass and ecosystem structure across ocean basins Journal Article In: Global Change Biology, vol. https://doi.org/10.1111/gcb.14512, 2019, (Type: Journal Article). @article{bryndum-buchholz_21st_2019,
title = {21st century climate change impacts on marine animal biomass and ecosystem structure across ocean basins},
author = {A. Bryndum-Buchholz and D. P. Tittensor and J. L. Blanchard and W. W. L. Cheung and M. Coll and E. D. Galbraith and S. Jennings and O. Maury and H. K. Lotze},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Global Change Biology},
volume = {https://doi.org/10.1111/gcb.14512},
note = {Type: Journal Article},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Schewe, J.; Gosling, S.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H.; Seneviratne, S. State-of-the-art global models underestimate impacts from climate extremes Journal Article In: Nature Communications, 2019. @article{schewe_state---art_2019b,
title = {State-of-the-art global models underestimate impacts from climate extremes},
author = {J. Schewe and S. Gosling and C. Reyer and F. Zhao and P. Ciais and J. Elliott and L. Francois and V. Huber and H. Lotze and S. Seneviratne},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Nature Communications},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
2018 |
Tittensor, D. P.; Eddy, T. D.; Lotze, H. K.; Galbraith, E. D.; Cheung, W. W. L.; Barange, M.; Blanchard, J. L.; Bopp, L.; Bryndum-Buchholz, A.; Büchner, M.; Bulman, C.; Carozza, D. A.; Christensen, V.; Coll, M.; Dunne, J. P.; Fernandes, J. A.; Fulton, E. A.; Hobday, A. J.; Huber, V.; Jennings, S.; Jones, M.; Lehodey, P.; Link, J. S.; Mackinson, S.; Maury, O.; Niiranen, S.; Oliveros-Ramos, R.; Roy, T.; Schewe, J.; Shin, Y-J; Silva, T.; Stock, C. A.; Steenbeek, J.; Underwood, P. J.; Volkholz, J.; Watson, J. R.; Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0 Journal Article In: Geosci. Model Dev., vol. 11, no. 4, pp. 1421–1442, 2018, ISSN: 1991-9603. @article{tittensor_protocol_2018b,
title = {A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0},
author = {D. P. Tittensor and T. D. Eddy and H. K. Lotze and E. D. Galbraith and W. W. L. Cheung and M. Barange and J. L. Blanchard and L. Bopp and A. Bryndum-Buchholz and M. B\"{u}chner and C. Bulman and D. A. Carozza and V. Christensen and M. Coll and J. P. Dunne and J. A. Fernandes and E. A. Fulton and A. J. Hobday and V. Huber and S. Jennings and M. Jones and P. Lehodey and J. S. Link and S. Mackinson and O. Maury and S. Niiranen and R. Oliveros-Ramos and T. Roy and J. Schewe and Y-J Shin and T. Silva and C. A. Stock and J. Steenbeek and P. J. Underwood and J. Volkholz and J. R. Watson and N. D. Walker},
url = {https://www.geosci-model-dev.net/11/1421/2018/},
doi = {10.5194/gmd-11-1421-2018},
issn = {1991-9603},
year = {2018},
date = {2018-04-01},
urldate = {2018-04-01},
journal = {Geosci. Model Dev.},
volume = {11},
number = {4},
pages = {1421--1442},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
Tittensor, D.; Lotze, H. K.; Tyler, P.; Galbraith, E. D.; Cheung, W. W. L.; Bryndum-Buchholz, A.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J. L.; Bopp, L.; Carozza, D. A.; Christensen, V.; Coll, M.; Jennings, S.; Jones, M.; Maury, O.; Silva, T. A. M.; Steenbeek, J.; Verley, P.; Schewe, J.; Volkholz, J.; Büchner, M. ISIMIP2a Simulation Data from Fisheries & Marine Ecosystems (Fish-MIP; global) Sector. GFZ Data Services Journal Article In: http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2956913, 2018, (Type: Journal Article). @article{tittensor_isimip2a_2018b,
title = {ISIMIP2a Simulation Data from Fisheries \& Marine Ecosystems (Fish-MIP; global) Sector. GFZ Data Services},
author = {D. Tittensor and H. K. Lotze and P. Tyler and E. D. Galbraith and W. W. L. Cheung and A. Bryndum-Buchholz and M. Barange and N. Barrier and D. Bianchi and J. L. Blanchard and L. Bopp and D. A. Carozza and V. Christensen and M. Coll and S. Jennings and M. Jones and O. Maury and T. A. M. Silva and J. Steenbeek and P. Verley and J. Schewe and J. Volkholz and M. B\"{u}chner},
year = {2018},
date = {2018-01-01},
urldate = {2018-01-01},
journal = {http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2956913},
note = {Type: Journal Article},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|
2015 |
Christensen, V.; Coll, M.; Buszowski, J.; Cheung, W. W. L.; Frölicher, T.; Steenbeek, J.; Stock, C. A.; Watson, R.; Walters, C. J. The global ocean is an ecosystem: Simulating marine life and fisheries Journal Article In: Global Ecology and Biogeography, vol. 24, no. 5, pp. 507–517, 2015. @article{christensen_global_2015b,
title = {The global ocean is an ecosystem: Simulating marine life and fisheries},
author = {V. Christensen and M. Coll and J. Buszowski and W. W. L. Cheung and T. Fr\"{o}licher and J. Steenbeek and C. A. Stock and R. Watson and C. J. Walters},
doi = {10.1111/geb.12281},
year = {2015},
date = {2015-01-01},
urldate = {2015-01-01},
journal = {Global Ecology and Biogeography},
volume = {24},
number = {5},
pages = {507--517},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
|